
LevelQ
Audit Report

Wed Jun 18 2025

contact@bitslab.xyz https://twitter.com/tonbit_

LevelQ Audit Report

1 Executive Summary

1.1 Project Information

Description LevelQ addresses the complexities within the TON ecosystem
by offering a streamlined approach to DeFi, designed to make
it easier for users to discover, access, and optimize their
digital assets.

Type DeFi

Auditors TonBit

Timeline Mon May 19 2025 - Wed Jun 18 2025

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/LevelQ-NMC/bonus-liquidity-contract

Commits c129c87306b6b8d5d7d03ceebcf2e120fe0af354
680e7e1318d807fad6e26c8ad7d08df878e1d5b7
f18aa7938b769fd640639dc21b601a1b05341eca

1/22

https://github.com/LevelQ-NMC/bonus-liquidity-contract
https://github.com/LevelQ-NMC/bonus-liquidity-contract/tree/c129c87306b6b8d5d7d03ceebcf2e120fe0af354
https://github.com/LevelQ-NMC/bonus-liquidity-contract/tree/680e7e1318d807fad6e26c8ad7d08df878e1d5b7
https://github.com/LevelQ-NMC/bonus-liquidity-contract/tree/f18aa7938b769fd640639dc21b601a1b05341eca

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

AMM contracts/lp_contract/amm.fc 7d91a5ab8a5b131bfc44d9b44476
ab39ee24dad5

ERR contracts/lp_contract/errors.fc 101c70d321ab0a2d9e8f17470cad
560e4da86254

OP contracts/lp_contract/op.fc ce05175bb7d3657f10cc835cf9bf37
801b249917

STO contracts/lp_contract/storage.fc 66bf337cd57ad7236a48f74d55852
0b1354ed6f1

LAU contracts/lp_contract/lp_account-u
tils.fc

47bb4332c3baf5eac647c69628500
19fd07def10

SRE contracts/lp_contract/roles/sudoer
_requests.fc

145b32dddfb205a833059f17c6c49
30ed38bfd80

HRE contracts/lp_contract/roles/halter_
requests.fc

4234f9700809761ca8f1edf8d7102
8091b8c963a

GRE contracts/lp_contract/roles/govern
or_requests.fc

feca15e1fd4daa76a3f6d758e258e
e4dc36e5a98

PAR contracts/lp_contract/params.fc 06b39d83f2cd5d12351234832a29f
89749f97dc5

GET contracts/lp_contract/get.fc 8eb934895a679964c19bf65676202
75e9408e36c

2/22

ASS contracts/lp_contract/asserts.fc 80c2152fee28b8b4f3cef1f369a2cd
e23b70d04e

ERR1 contracts/lp_account/errors.fc 3d4932214719cd033a065888b1de
414b718db649

OP1 contracts/lp_account/op.fc 59cec21b49338dd754a9e40a800d
a1a833f81e34

STO1 contracts/lp_account/storage.fc 2922cee7c447208aa6dc2ece7334a
ecaa47ba1e7

PAR1 contracts/lp_account/params.fc 1990d10a579a39a3f35b2e6b64ac
59c96cdd22d3

PCA contracts/lp_account/pool-calls.fc d6444fa1d015d9ac2f71fdffb9a27e
951c9ee037

GET1 contracts/lp_account/get.fc 8ac3d9b371fcef2be9e96c9269f8b
aa2a13353c1

LAC contracts/lp_account.fc 6c67bad342a5e759a62d96ebfd23f
19f3c71b063

LCO contracts/lp_contract.fc 73a64cb679d0e922c54ef939765fc
5fddb5c4a57

3/22

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 11 9 2

Informational 5 4 1

Minor 1 1 0

Medium 2 2 0

Major 1 0 1

Critical 2 2 0

4/22

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

5/22

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/22

2 Summary

This report has been commissioned by Sachin to identify any potential issues and
vulnerabilities in the source code of the LevelQ smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 11 issues of varying severity, listed below.

ID Title Severity Status

ERR-1 Unused Fields Informational Fixed

HRE-1 Inconsistent Roles for Halting and
Unhalting the Contract

Informational Fixed

LCO-1 Malicious Attacker Can Forge
pool::cb_deposit to Drain Pool

Funds

Critical Fixed

LCO-2 Parameter Verification is
Incomplete

Critical Fixed

LCO-3 Centralization Risk Major Acknowledged

LCO-4 Halt Mechanism May Cause User
Fund Loss

Medium Fixed

LCO-5 Price Time Validity Mechanism May
Cause User Fund Loss

Medium Fixed

LCO-6 Wrong Comment Informational Fixed

7/22

LCO-7 Unused Storage Variable
storage::bonus_fee

Informational Acknowledged

PCA-1 Ratio Sum Should Be 100 Minor Fixed

STO-1 Mismatch in Storage and
Transmission Bitwidth for Ratio
Values

Informational Fixed

8/22

3 Participant Process

Here are the relevant actors with their respective abilities within the LevelQ Smart Contract :

halter

Can halt deposit and withdraw

sudoer

Can send any message in the role of pool

Can update pool's storage

governor

Can update sudoer,governor,interest manager,halter

Can set unhalt deposit and withdraw

interest manager (Oracle)

Can set LP price

Can set bonus fee

9/22

4 Findings

ERR-1 Unused Fields

Severity: Informational

Status: Fixed

Code Location:

contracts/lp_account/errors.fc#1;

contracts/lp_contract/params.fc#1;

contracts/lp_account/errors.fc#1;

contracts/lp_account/params.fc#1

Descriptions:

1. In the lp_contract folder, the error::wrong_state and NO_LIQUIDITY fields in the

errors.fc file are not used,

2. and the FEE_DIVIDER and TON_ADDRESS fields in the params.fc file are not used;

3. in the lp_account folder, the NO_LIQUIDITY and proportion::wrong_ratio fields in

the errors.fc file are not used,

4. and the REQUIRED_TON_RESERVE , FEE_DIVIDER , and TON_ADDRESS fields in the

params.fc file are not used.

Suggestion:

It is recommended to remove unused fields.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/22

HRE-1 Inconsistent Roles for Halting and Unhalting the
Contract

Severity: Informational

Status: Fixed

Code Location:

contracts/lp_contract/roles/halter_requests.fc#2;

contracts/lp_contract/roles/governor_requests.fc#8

Descriptions:

The halter role can pause the contract, while unpausing requires the governor role.

Typically, both operations should be managed by the same role. See code below:

() process_halt_request(slice sender) impure inline_ref {

 assert_sender(sender, storage::halter_address);

 storage::halted = true;

}

() process_unhalt_request(slice sender) impure inline_ref {

 assert_sender(sender, storage::governor_address);

 storage::halted = false;

}

Suggestion:

Use the same role for both pausing and unpausing the contract.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/22

LCO-1 Malicious Attacker Can Forge pool::cb_deposit to Drain
Pool Funds

Severity: Critical

Status: Fixed

Code Location:

contracts/lp_contract.fc#42-82

Descriptions:

The lp_contract.fc contract does not verify whether the pool::cb_deposit message is sent

by an authentic stonfi wallet or dedust wallet , allowing any contract to forge the message.

() process_jettons(slice in_msg_body, slice sender_address) impure {

 ...

 if (op == pool::cb_deposit){

 slice user_lp_address_generated = calculate_user_lp_account_address(...);

 throw_unless(error::invalid_caller, equal_slices(user_lp_account,

user_lp_address_generated));

In the above process_jettons() function, the argument of sender_address (i.e., stonfi or

dedust wallet) is not validated, allowing an attacker to fake a pool::cb_deposit message and

drain the pool.

Suggestion:

Add a check to ensure sender_address is a valid stonfi or dedust LP wallet.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/22

LCO-2 Parameter Verification is Incomplete

Severity: Critical

Status: Fixed

Code Location:

contracts/lp_contract.fc#155-165

Descriptions:

If the message is not sent from the lp_account contract, there might be a case of message

forgery. An attacker could forge user_address and user_lp_account addresses to bypass

this check: throw_unless(error::invalid_caller, equal_slices(user_lp_account,

user_lp_address_generated)); Once successfully bypassing the check, the attacker can forge

arbitrary amounts of stonfi and dedust tokens to stake for acquiring tby tokens, leading

to significant security risks and asset losses.

Suggestion:

Pass the from_address into the process_jettons function, and during the check

throw_unless(error::invalid_caller, equal_slices(user_lp_account,

user_lp_address_generated)); inside the function, instead of using the user_lp_account

parsed from the in_msg_body , directly use the passed-in from_address .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/22

LCO-3 Centralization Risk

Severity: Major

Status: Acknowledged

Code Location:

contracts/lp_contract.fc#106

Descriptions:

The sudoer role in lp_contract.fc can send arbitrary messages as the pool and modify any

pool storage.

The governor can assign the sudoer .

Suggestion:

Use multisig for both sudoer and governor .

Resolution:

The team acknowledges the centralisation of sudoer and governor and will transition to

multisig soon.

14/22

LCO-4 Halt Mechanism May Cause User Fund Loss

Severity: Medium

Status: Fixed

Code Location:

contracts/lp_contract.fc#156

Descriptions:

When a pool::cb_deposit is received while the contract is halted, it won’t mint tby tokens

for users, or return the received assets.

} elseif (op == jetton::transfer_notification) {

 assert_not_halted();

 ...

 process_jettons(cs.begin_parse(), sender_address);

Suggestion:

The halt mechanism should not affect pool::cb_deposit handling.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/22

LCO-5 Price Time Validity Mechanism May Cause User Fund
Loss

Severity: Medium

Status: Fixed

Code Location:

contracts/lp_contract.fc#57

Descriptions:

If the price set by oracle is older than 30 minutes when a pool::cb_deposit is received, the

pool won’t mint tby tokens for users, or return the received assets.

if ((storage::lp_price_updated_at + 1800 < now()) & (storage::tby_lp_token_supply > 0)){

 throw(error::lp_price_outdated);

Suggestion:

The price time validity check should not apply to pool::cb_deposit .

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/22

LCO-6 Wrong Comment

Severity: Informational

Status: Fixed

Code Location:

contracts/lp_contract.fc#184-186

Descriptions:

if ((storage::stonfi_lp_ratio == 0) | (storage::dedust_lp_ratio == 0)){if ((storage::stonfi_lp_ratio == 0) | (storage::dedust_lp_ratio == 0)){
 required_ton = ONE_TON * 5 / 3; ;; 1.25 TON needed, most of them will berequired_ton = ONE_TON * 5 / 3; ;; 1.25 TON needed, most of them will be
returnedreturned
 }}

The code and comments do not correspond, 1.25 is 5/4.

Suggestion:

It is recommended to keep code and comments consistent.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/22

LCO-7 Unused Storage Variable storage::bonus_fee

Severity: Informational

Status: Acknowledged

Code Location:

contracts/lp_contract.fc#135

Descriptions:

The interest manager role sets storage::bonus_fee , but it's never used elsewhere.

} elseif (op == interest_manager::set_interest){

 assert_sender(...);

 storage::bonus_fee = in_msg_body~load_uint(8);

Suggestion:

Consider removing the unused storage.

Resolution:

Can be reused in future

18/22

PCA-1 Ratio Sum Should Be 100

Severity: Minor

Status: Fixed

Code Location:

contracts/lp_account/pool-calls.fc#16

Descriptions:

The following code lacks a check enforcing stonfi_lp_ratio + dedust_lp_ratio == 100 , despite

the comment:

() handle_pool_messages(...) impure inline {

 if (op == pool::deposit_ratio){

 (int stonfi_lp_ratio, int dedust_lp_ratio) = (...); ;; ratio sum should be 100

Suggestion:

Add a check to enforce the ratio sum equals 100.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

19/22

STO-1 Mismatch in Storage and Transmission Bitwidth for
Ratio Values

Severity: Informational

Status: Fixed

Code Location:

contracts/lp_contract/storage.fc#77

Descriptions:

In contracts/lp_contract/storage.fc :

storage::stonfi_lp_ratio = ds~load_uint(16);

storage::dedust_lp_ratio = ds~load_uint(16);

But when transmitted (in contracts/lp_contract.fc):

cell payload = begin_cell()

 .store_uint(..., 32)

 ...

 .store_uint(storage::stonfi_lp_ratio, 8)

 .store_uint(storage::dedust_lp_ratio, 8)

 .end_cell();

The values are stored as uint16 but sent as uint8 . If the ratio exceeds uint8 max, it

breaks functionality.

Suggestion:

Unify storage and transmission bitwidth.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

20/22

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

21/22

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

22/22

	863_page1.pdf
	863_page2.pdf

