TOM PUMP
Audit Report

Mon Oct 21 2024

¥ contact@bitslab.xyz W https://twitter.com/tonbit_

(¥ TonBit

TOM PUMP Audit Report

1 Executive Summary

1.1 Project Information

Description ATON pump and DEX protocol

Type DEX

Auditors TonBit

Timeline Thu Sep 19 2024 - Mon Oct 21 2024

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review
Source Code https://github.com/TOM-PUMP/func-part
Commits 5bf631225f6e26ed2894576d60a92a0c5f73¢905

9c6770f874c1a3d207dafa222ded468683309924
d28532a44ae1cdc59d8f1d63e69f2a036db189a5

1/32

https://github.com/TOM-PUMP/func-part
https://github.com/TOM-PUMP/func-part/tree/5bf631225f6e26ed2894576d60a92a0c5f73c905
https://github.com/TOM-PUMP/func-part/tree/9c6770f874c1a3d207dafa222ded468683309924
https://github.com/TOM-PUMP/func-part/tree/d28532a44ae1cdc59d8f1d63e69f2a036db189a5

1.2 Files in Scope

The following are the SHAT hashes of the original reviewed files.

ID

JWA

DWA

MAT

OCA

PAR

AMU

STD

0CO

DPA

STO

UTI

File

contracts/jetton_wallet.fc

contracts/dex_wallet.fc

contracts/imports/math.fc

contracts/imports/op-codes-amm.f

C

contracts/imports/params.fc

contracts/imports/amm-minter-util

s.fc

contracts/imports/stdlib.fc

contracts/imports/op-codes.fc

contracts/imports/discovery-para

ms.fc

contracts/imports/store.fc

contracts/imports/utils.fc

2/32

SHA-1 Hash

41159b22677e818569afde7fe9021
f61bc9b42be

bac05a5aaffe333276a3bf9ac9f20b
988467cae3

43ea019e971e8d011a3d99e5378e
dad93bdfbba5

9ccb51b8db9f46e31be2e3c0dd8e
cb68eb9cc68b

e87b4e91cebbed58e6a23de768e2
b63131639a91

1087721d8daa26659798c5b38675
33557232394e

48ba5be2230d6db462adb890e7b
15ff0b36b90de

7ef90bd084811dbc89046a146849
8ca4a9dbce21

8c7a35f4878a074828d8eb43761c1
765e3c9fab1

0e39f549eabcd85da12d079662ca
03accf397cc0

cc7d2af21612c1306cb5cf067e19d
63cb734f723

CON

JuT

DMI

PFU

IMI

contracts/imports/constants.fc

contracts/imports/jetton-utils.fc

contracts/dex_minter.fc

contracts/pump_fun.fc

contracts/jetton_minter.fc

3/32

1a072c090130b98f010ad74bed33
d6a42b199a2a

971a7946ff8d80d8e1344e51eed8e
31c2d8dfcal

b69b26b7805961c3ea7619a37702
9b39c4ac0f05

b3b69e6457521c4b29b3acch2beb
812af878d472

85b1cd8c58afebd7dfd1f472060f50
e21e9d1e8c

1.3 Issue Statistic

Item Count Fixed Acknowledged
Total 15 5 10
Informational 1 0 1

Minor 1 1 0

Medium 5 1 4

Major 8 3 5

Critical 0 0 0

4/32

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

e Transaction-ordering dependence

e Timestamp dependence

¢ Integer overflow/underflow by bit operations
e Number of rounding errors

e Denial of service / logical oversights

e Access control

e Centralization of power

e Business logic contradicting the specification
e Code clones, functionality duplication

e (Gas usage

e Arbitrary token minting

e Unchecked CALL Return Values

5/32

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process
e Carry out relevant security tests on the testnet or the mainnet;

e Ifthere are any questions during the audit process, communicate with the code owner
in time. The code owners should actively cooperate (this might include providing the
latest stable source code, relevant deployment scripts or methods, transaction
signature scripts, exchange docking schemes, etc.);

e The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/32

2 Summary

This report has been commissioned by TOM to identify any potential issues and
vulnerabilities in the source code of the TOM PUMP smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 15 issues of varying severity, listed below.

ID Title Severity Status

AMU-1 When token_reserves ==0 , the Major Acknowledged
User's Share Calculation is
Incorrect

AMU-2 The total_supply is Updated Medium Acknowledged

incorrectly when the First User
Adds Liquidity

DMI-1 Removing Liquidity Lacks Slippage Major Acknowledged
Protection
DMI-2 Fee Omission Issue in dex_minter Major Acknowledged

Swap Operations

DMI-3 The User cannot Receive all the Medium Acknowledged
Extra Assets

DMI-4 Strict Liquidity Conditions Cause Medium Acknowledged
Transaction Failures

JMI-1 Proposed Fee Deductions for Major Fixed
Minting
JMI-2 Refunding Excess TON During Major Acknowledged

Minting

7/32

JMI-3

JMI-4

JMI-5

JMI-6

JMI-7

JMI-8

JMI-9

When op = burn , the Protocol's
Calculation of reserve_return is
Incorrect

Minting and Burning Lack Slippage
Protection

Centralization Risk

Single-step Ownership Transfer
Can be Dangerous

The Calculation of Tokens during
Minting is Incorrect

Precision Loss

Storage in Jetton_minter Protocol

8/32

Major

Major

Major

Medium

Medium

Minor

Informational

Fixed

Fixed

Acknowledged

Acknowledged

Fixed

Fixed

Acknowledged

3 Participant Process

Here are the relevant actors with their respective abilities within the TOM PUMP Smart
Contract:
Admin

Admin can upgrade the contract via the message op == OP_CODE_UPGRADE .

Admin can change the admin via the message op==3.

Admin can change the content via the message op==4.

Admin can perform a withdraw operation via the message op == op::withdraw .

e Admin can perform a deposit operation via the message op == op::deposit .
User

e Users can remove liquidity via the message op == OP_BURN_NOTIFICATION .
e Users can swap TON to Jetton via the message op == OP_SWAP_TON .

e Users can add liquidity or swap Jetton to TON via the message op ==
OP_TRANSFER_NOTIFICATION .

e Users can mint Jetton via the message op == op::mint .

e Users can burn Jetton to exchange for TON via the message op ==
op::burn_notification .

9/32

4 Findings

AMU-1 When token_reserves == 0, the User's Share
Calculation is Incorrect

Severity: Major
Status: Acknowledged

Code Location:;

contracts/imports/amm-minter-utils.fc#150

Descriptions:

In the calculate_new_Ip() function, when store::token_reserves ==0 , the calculation for

new_liquidity is incorrectly defined as:

new_liquidity = square_root(ton_amount * token_amount) / MINIMUM_LIQUIDITY

Instead, new_liquidity should be calculated as:

new_liquidity = square_root(ton_amount * token_amount) - MINIMUM_LIQUIDITY

This error results in the user receiving less liquidity than they should.

Suggestion:

It is recommended to change it to:

new_liquidity = square_root(ton_amount * token_amount) - MINIMUM_LIQUIDITY

10/32

AMU-2 The total_supply is Updated incorrectly when the First
User Adds Liquidity

Severity: Medium
Status: Acknowledged

Code Location:

contracts/imports/amm-minter-utils.fc#144-163

Descriptions:
In the calculate_new_lp() function, if token_reserves == 0 , the protocol calculates the

user's liquidity as follows:

new_liquidity = square_root(ton_amount * token_amount) / MINIMUM_LIQUIDITY

Then, it updates:

store::total_supply += new_liquidity

The issue here is that store::total_supply should also add MINIMUM_LIQUIDITY . This

approach is intended to prevent the first liquidity provider from manipulating shares. In
Uniswap V2, the liquidity obtained by the user is calculated after deducting
MINIMUM_LIQUIDITY , with the protocol minting MINIMUM_LIQUIDITY to the zero

address. Thus, when the first user adds liquidity, their total liquidity becomes:

liquidity = totalSupply - MINIMUM_LIQUIDITY

Suggestion:
It is recommended to add MINIMUM_LIQUIDITY to store:total_supply when the first user

adds liquidity.

11/32

DMI-1 Removing Liquidity Lacks Slippage Protection

Severity: Major
Status: Acknowledged

Code Location:

contracts/dex_minter.fc#142-179

Descriptions:
In the dex_minter contract, when op == OP_BURN_NOTIFICATION , the protocol calls
remove_liquidity() to remove liquidity and obtains ton and token . However, the protocol

does not implement any slippage protection measures.

() remove_liquidity(
int jetton_amount,
slice from_address,
int query_id,
slice sender,
int msg_value,
int fwd_fee) impure inline {

int ton_to_remove = muldiv(jetton_amount, store::iton_reserves, store::total_supply);
int token_to_remove = muldiv(jetton_amount, store::token_reserves,

store::total_supply);

throw_unless(ERROR::WRONG_JETTON_SENDER_ADDRESS,
equal_slices(
calculate_user_jetton_wallet_address(from_address,my_address(),
store:jetton_wallet_code
)

, sender)
);

In Uniswap V2, the protocol includes slippage protection by checking that the amount of
tokens the user receives is greater than or equal to the user's expected minimum token

amount. https://github.com/Uniswap/v2-

periphery/blob/master/contracts/UniswapV2Router02.sol#L117-L118

12/32

https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol#L117-L118
https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol#L117-L118

function removelLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline

) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {

address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
lUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity);

(uint amount0, uint amount1) = IlUniswapV2Pair(pair).burn(to);

(address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);

(amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1,
amountO0);

require(amountA >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT");

require(amountB >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT");

Suggestion:

It is recommended to implement slippage protection measures.

13/32

DMI-2 Fee Omission Issue in dex_minter Swap Operations

Severity: Major
Status: Acknowledged

Code Location:

contracts/dex_minter.fc#90-130

Descriptions:
In the dex_minter contract, during the swap operation, there are scenarios where no fees

are charged, which could lead to financial losses for the protocol.

1. In op == OP_SWAP_TON , if slippage protection is triggered, the funds are refunded to
the user. However, in this case, no gas fee or forward fee is charged, and the cost of

refunding TON is covered by the protocol.

if ((@mount_out < min_amount_out) | (amount_out > trgt_resvers)) {
if (is_ton_src ==true) {
send_grams(sender, in_amount);
} else {
transfer_token(query_id, sender, in_amount, msg_value);

}

return ();

send_raw_message(msg, 1 + 2);

2. The same issue exists in sub_op == OP_SWAP_TOKEN .

Suggestion:

It is recommended to deduct the gas and forward fees during the swap operation.

14/32

DMI-3 The User cannot Receive all the Extra Assets

Severity: Medium
Status: Acknowledged

Code Location:

contracts/dex_minter.fc#116-123

Descriptions:
In the add liquidity process, the protocol transfers extra assets to jetton_sender under the

condition that either extra_jeton or extra_ton is greater than ADD_LIQUIDITY_DUST .

else {
int extra_ton = ton_liquidity - optimal_ton;

int extra_jeton = jetton_amount - optimal_jetton;

;;yreturn extra's

if extra_jeton > ADD_LIQUIDTY_DUST {
transfer_token(query_id, jetton_sender, extra_jeton, fwd_fee * 2); ;; TODO send

0.1TON use fwd

ton_liquidity = optimal_ton;

}

elseif extra_ton > ADD_LIQUIDTY_DUST {

send_grams(jetton_sender ,extra_ton);
;;» token_liquidity = optimal_token;

However, the code uses an if-elseif structure, meaning the protocol will either transfer
jeton to jetton_sender or ton to jetton_sender , but not both. This could resultin a loss

of funds for the user, as they may not receive all the extra assets they are entitled to.

Suggestion:

It is recommended to transfer all extra assets to the user.

15/32

DMI-4 Strict Liquidity Conditions Cause Transaction Failures

Severity: Medium
Status: Acknowledged

Code Location:

contracts/dex_minter.fc#101-124

Descriptions:
In the dex_minter contract, the condition checks for adding liquidity are overly strict, which

may cause valid transactions to fail.

if ((optimal_ton <= ton_liquidity_min) | (optimal_jetton <= jeton_liquidity_min)) {
revert_add_liquidity(
ton_liquidity,
jetton_amount,
jetton_sender,
query_id,
msg_value,
fwd_fee
);
should_revert = 1;
}else {
int extra_ton = ton_liquidity - optimal_ton;

int extra_jeton = jetton_amount - optimal_jetton;

if (extra_jeton > ADD_LIQUIDTY_DUST) {
transfer_token(query_id, jetton_sender, extra_jeton, fwd_fee * 2);

ton_liquidity = optimal_ton;
} else if (extra_ton > ADD_LIQUIDTY_DUST) {
send_grams(jetton_sender, extra_ton);

You can refer to Uniswap’s implementation for reference: https://github.com/Uniswap/v2-

periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L

16/32

https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L45-L57
https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L45-L57

L57/.

Suggestion:

It is recommended to modify the code logic by referencing Uniswap'’s approach.

17/32

https://github.com/Uniswap/v2-periphery/blob/0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f/contracts/UniswapV2Router02.sol#L45-L57

JMI-1 Proposed Fee Deductions for Minting

Severity: Major
Status: Fixed

Code Location:

contracts/jetton_minter.fc#182-221

Descriptions:

In the Jetton_minter contract, when minting Jetton tokens, a protocol fee of 1/10 TON is
charged based on the user's TON used to mint the Jetton tokens through msg_value .
However, the forward fee (fwd_fee) and gas fee (gas_fee) are not deducted. If the gas fee

and forward fee are higher than the protocol fee, the protocol may struggle to be profitable.

int fee = muldiv(1, const::nano(), 10);

throw_unless(75, msg_value - fee > muldiv(3, const::nano(), 10));
int buy_value = msg_value - fee

Suggestion:
It is recommended to deduct the forward fee (fwd_fee) and gas fee (gas_fee) during the

minting process.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/32

JMI-2 Refunding Excess TON During Minting
Severity: Major
Status: Acknowledged

Code Location:

contracts/jetton_minter.fc#117-136

Descriptions:

In the jetton_minter contract, the minting of Jetton tokens is calculated as follows:

(int, int, int) get_token_amount_for_ton(
int msg_value,
int virtual_total_supply,
int virtual_ton_total,
int virtual_initial_ton_amount,
int target_liquidity,
int max_supply
) {
int k = const::nano() * const::nano() * virtual_initial_ton_amount;
virtual_ton_total += (msg_value / 100) * 99;
int tokens = (virtual_total_supply - (k / virtual_ton_total));
int liquidity_pool = abs(virtual_total_supply - max_supply);

if (liquidity_pool <= tokens) {
tokens = liquidity_pool;
}

virtual_total_supply -= tokens;

return (tokens, virtual_ton_total, virtual_total_supply);

If the value of abs(virtual_total_supply - max_supply) is zero or very small, the amount of
Jetton tokens minted by the user will be minimal, despite the user spending a significant

amount of TON.

Suggestion:

It is recommended to refund the excess TON to the user.

19/32

JMI-3 When op = burn, the Protocol's Calculation of
reserve_return is Incorrect

Severity: Major
Status: Fixed

Code Location:

contracts/jetton_minter.fc#226-227

Descriptions:

When op == op::mint() , the protocol uses get_token_amount_for_ton() to calculate tokens.

(int, int, int) get_token_amount_for_ton(
int msg_value,
int virtual_total_supply,
int virtual_ton_total,
int virtual_initial_ton_amount,
int target_liquidity,
int max_supply
){
int k = const::nano() * const::nano() * virtual_initial_ton_amount;
virtual_ton_total += (msg_value / 100) * 99;
int tokens = (virtual_total_supply - (k / virtual_ton_total));
int liquidity_pool = abs(virtual_total_supply - max_supply);

if (liquidity_pool <= tokens) {
tokens = liquidity_pool;
}

virtual_total_supply -= tokens;
return (tokens, virtual_ton_total, virtual_total_supply);

When op == op::burn_notification() , the protocol first calculates current_price , then

computes reserve_return using jetton_amount * current_price .

if (op == op::burn_notification()) {
int jetton_amount = in_msg_body~load_coins();

slice from_address =in_msg_body~load_msg_addr();

20/32

int current_price = get_jetton_price();

int reserve_return = muldiv(jetton_amount, current_price, const::nano());

The calculation in get_jetton_price() is defined as price = virtual_ton_total /

virtual_token_total_supply .

(int) get_jetton_price() method_id {
(
int total_supply,
int max_supply,
int target_liquidity,
int virtual_token_total_supply,
int virtual_token_max_supply,
int virtual_ton_total,
int virtual_initial_ton_amount,
int reserve_balance,
int reserve_ratio,
slice admin_address,
cell content,
cell jetton_wallet_code,
_) =load_data();

return muldiv(virtual_ton_total, const::nano(), virtual_token_total_supply);

This method for calculating reserve_return differs from the approach used to compute
tokens during minting, indicating a potential inconsistency in the token valuation process.

This algorithm can allow users to mint and then directly burn to profit.

Suggestion:

It is recommended to ensure consistency between the two calculation methods.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/32

JMI-4 Minting and Burning Lack Slippage Protection

Severity: Major
Status: Fixed

Code Location:

contracts/jetton_minter.fc#173-258

Descriptions:
The protocol is developed based on the x*y = k economic model, similar to Uniswap V2.
Users receive LP tokens when they mint and can withdraw the corresponding tokens when

they burn.

if (op == op::burn_notification()) {
int jetton_amount = in_msg_body~load_coins();
slice from_address =in_msg_body~load_msg_addr();
int current_price = get_jetton_price();
int reserve_return = muldiv(jetton_amount, current_price, const::nano());
throw_unless(74,
equal_slices(calculate_user_jetton_wallet_address(from_address, my_address(),
jetton_wallet_code), sender_address)

);

var msg = begin_cell()
.store_uint(0x10, 6)
.store_slice(from_address)
.store_coins(reserve_return)
Store_uint(0, 1+4+4+64+32+1+1);
send_raw_message(msg.end_cell(), 0);

slice response_address =in_msg_body~load_msg_addr();
if (response_address.preload_uint(2) = 0) {
var msg = begin_cell()
.store_uint(0x10, 6) ;; nobounce - int_msg_info$0 ihr_disabled:Bool
bounce:Bool bounced:Bool src:MsgAddress -> 011000

.store_slice(response_address)
.store_coins(0)
Store_uint(0,1+4+4+64+32+1+1)
.store_uint(op::excesses(), 32)
store_uint(query_id, 64);

send_raw_message(msg.end_cell(), 2 + 64);

save_data(
total_supply - jetton_amount,
max_supply,
target_liquidity,
virtual_token_total_supply + jetton_amount,

virtual_token_max_supply,

virtual_ton_total - reserve _return,
virtual_initial_ton_amount,
reserve_balance - reserve return,
reserve_ratio,
admin_address,
content,
jetton_wallet_code,
jetton_minter_code);

return ();

However, both minting and burning lack slippage protection, making users susceptible to
sandwich attacks. In contrast, Uniswap V2 has implemented appropriate slippage protection

measures within its protocol. https://github.com/Uniswap/v2-

periphery/blob/master/contracts/UniswapV2Router02.s0l#L46-L58

Suggestion:

It is recommended to implement slippage protection measures.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/32

https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol#L46-L58
https://github.com/Uniswap/v2-periphery/blob/master/contracts/UniswapV2Router02.sol#L46-L58

JMI-5 Centralization Risk
Severity: Major
Status: Acknowledged

Code Location:

contracts/jetton_minter.fc#339-410

Descriptions:

Centralization risk was identified in the smart contract. The admin can withdraw funds from

the contract and modify its content.

if (op == op::withdraw()) {
throw_unless(73, equal_slices(sender_address, admin_address));
slice address = in_msg_body~load_msg_addr();
var msg = begin_cell()
.store_uint(0x10, 6) ;; nobounce - int_msg_info$0 ihr_disabled:Bool bounce:Bool
bounced:Bool packages:MsgAddress -> 011000

.store_slice(address)
.store_coins(my_balance - const::min_tons_for_storage())
Store_uint(0, 1+4+4+64+32+1+1),
send_raw_message(msg.end_cell(), 0);
return ();

Suggestion:

It is recommended to take ways to reduce the risk of centralization.

24/32

JMI-6 Single-step Ownership Transfer Can be Dangerous

Severity: Medium
Status: Acknowledged

Code Location:

contracts/jetton_minter.fc#296-315

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring
ownership or admin rights it can mean that role is lost forever. If the admin permissions are
given to the wrong address within this function, it will cause irreparable damage to the
contract. Below is the official documentation explanation from OpenZeppelin

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single
account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

if (op ==3) {;; change admin
throw_unless(73, equal_slices(sender_address, admin_address));

slice new_admin_address = in_msg_body~load_msg_addr();

save_data(
total_supply,
max_supply,
target_liquidity,
virtual_token_total_supply,
virtual_token_max_supply,
virtual_ton_total,
virtual_initial_ton_amount,
reserve_balance,
reserve_ratio,
new_admin_address,
content,
jetton_wallet_code,
jetton_minter_code);

return ();

25/32

https://docs.openzeppelin.com/contracts/4.x/api/access

Suggestion:

It is recommended to use a two-step ownership transfer pattern.

26/32

JMI-7 The Calculation of Tokens during Minting is Incorrect

Severity: Medium
Status: Fixed

Code Location:

contracts/jetton_minter.fc#117-136

Descriptions:

In the get_token_amount_for_ton() function, the protocol calculates tokens using the

following method.

(int, int, int) get_token_amount_for_ton(
int msg_value,
int virtual_total_supply,
int virtual_ton_total,
int virtual_initial_ton_amount,
int target_liquidity,
int max_supply

int k = const::nano() * const::nano() * virtual_initial_ton_amount;
virtual_ton_total += (msg_value / 100) * 99;

int tokens = (virtual_total_supply - (k / virtual_ton_total));

int liquidity_pool = abs(virtual_total_supply - max_supply);

if (liquidity_pool <= tokens) {
tokens = liquidity_pool;
}

virtual_total_supply -= tokens;
return (tokens, virtual_ton_total, virtual_total_supply);

From the test code, we find the configuration information as follows.

const data: Cell = beginCell()
.storeCoins(0)
.storeCoins(toNano(800000000))
.storeCoins(toNano(1100))

.storeCoins(toNano(1000000000))
.storeCoins(toNano(800000000))
.storeCoins(toNano(
.storeCoins(toNano(400))
.storeCoins(0)

.storeUlint(0, 32)

.storeAddress(admin)
.storeRef(contentCell)
.storeRef(tokenCode)
.endCell();
const dataCell: Cell = new Cell({ bits: data.bits, refs: data.refs });

Given msg.value as 100 * 1e9 , the calculations proceed as follows:

1. (k=1e9* 1e9* 400 * 1e9 = 400000000000000000000000000000)
2. (virtual_ton_total =400 * 1e9 + 100 * 1e9/100 * 99 = 499000000000)

3. The tokens are calculated as (tokens = 1000000000 * 1e9 -
400000000000000000000000000000/499000000000 = 198396793587174349).

When buy_value is also 100 * 1e9 , receiving 198396793587174349 tokens appears

unreasonable.

Suggestion:

It is recommended to adjust the value of k.

Resolution:

This issue has been fixed by removing a const::nano() multiplier when calculating k.

28/32

JMI-8 Precision Loss

Severity: Minor
Status: Fixed

Code Location:

contracts/jetton_minter.fc#126

Descriptions:
The line virtual_ton_total += (msg_value / 100) * 99; may cause amplified precision loss due

to performing division before multiplication.

Suggestion:

It is recommended to resolve this issue by multiplying first and then dividing, as follows:

virtual_ton_total += (msg_value * 99) / 100;

Resolution:

This issue has been fixed. The client has adopted our suggestions.

29/32

JMI-9 Storage in Jetton_minter Protocol

Severity: Informational
Status: Acknowledged

Code Location:

contracts/jetton_minter.fc#33-63

Descriptions:
In the Jetton_minter protocol, what is the significance of target_liquidity ,
virtual_token_max_supply , and reserve_ratio ? The protocol does not include any

evaluations or conditions regarding target_liquidity and other parameters.

Suggestion:

It is recommended to use or remove these parameters.

30/32

Appendix 1

Issue Level

¢ Informational issues are often recommendations to improve the style of the code or
to optimize code that does not affect the overall functionality.

e Minor issues are general suggestions relevant to best practices and readability. They
don't post any direct risk. Developers are encouraged to fix them.

e Medium issues are non-exploitable problems and not security vulnerabilities. They
should be fixed unless there is a specific reason not to.

e Major issues are security vulnerabilities. They put a portion of users' sensitive
information at risk, and often are not directly exploitable. All major issues should be
fixed.

e Critical issues are directly exploitable security vulnerabilities. They put users' sensitive
information at risk. All critical issues should be fixed.

Issue Status

e Fixed: The issue has been resolved.
e Partially Fixed: The issue has been partially resolved.

e Acknowledged: The issue has been acknowledged by the code owner, and the code
owner confirms it's as designed, and decides to keep it.

31/32

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

32/32

	565_page1.pdf
	565_page2.pdf

