
UTonic
Audit Report

Sat Oct 12 2024

contact@bitslab.xyz https://twitter.com/tonbit_

UTonic Audit Report

1 Executive Summary

1.1 Project Information

Description The First TON Restaking Protocol with Triple Yields

Type Staking

Auditors TonBit

Timeline Fri Sep 27 2024 - Sat Oct 12 2024

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/UTONICFinance/utonic-contracts

Commits f845e41674f41f901a8e7ac84d2ef9fd76722324
836726317bb0e8f2a0119d00f69fb71a34bf3a85
4ecd43bf53cf23b8cc1dede66d5714955f58b524

1/21

https://github.com/UTONICFinance/utonic-contracts
https://github.com/UTONICFinance/utonic-contracts/tree/f845e41674f41f901a8e7ac84d2ef9fd76722324
https://github.com/UTONICFinance/utonic-contracts/tree/836726317bb0e8f2a0119d00f69fb71a34bf3a85
https://github.com/UTONICFinance/utonic-contracts/tree/4ecd43bf53cf23b8cc1dede66d5714955f58b524

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

STD contracts/imports/stdlib.fc 2f104cd568a4cebb1c4112ecf8979
800f0672575

EVE contracts/proxy/events.func aca46b574dbcf49b45a02677209b
e0cc0a60d83e

PAR contracts/proxy/proxy_lst_ton/para
ms.func

e015dbea7ac114bc7daa32fab418
bf020e81fa15

ERR contracts/proxy/proxy_lst_ton/erro
rs.func

3c36549eadfcbd6632d2922de5a1
cfca6f78fef7

CPPW2PF contracts/proxy/proxy_whale2/par
ams.func

afcc174d70ed23e0b63813a0ab25
ecdac1b07d46

CPPW2OF contracts/proxy/proxy_whale2/op.f
unc

16a81ad17c0a95422144285259a6
b0b1c95630d6

CPPTWOF contracts/proxy/proxy_ton/withdra
w/op.func

bc71f6faa71bd4fc757ae247b51f1e
ca7734eb26

CPPTWEF contracts/proxy/proxy_ton/withdra
w/errors.func

955acf8e3e10639783f4eb7de49bd
3ed51dfc348

CPPTPF contracts/proxy/proxy_ton/param
s.func

b288253d3afcacfa739f0165335514
611ac681ad

CWPF contracts/wallet/params.func 0f85983d103679417e325addd785
3de766224243

CWSF contracts/wallet/storage.func 41f440658bffb874c59576f2884812
3d6dc45b98

2/21

CWEF contracts/wallet/errors.func 09ba6584fdd2197dc57cb696c52b
2b1c977f4e2a

CLUF contracts/libs/utils.func 37c2117f7f0fb9c5e7ee229f6f2e73
dc9d333614

CMEF contracts/minter/events.func 185552aab258d6b6486b2d6d4de
50c9a5a2376e7

TYP contracts/minter/types.func 1116320bcabe7a4f3ce19459e89b6
37a3152b376

CMEF contracts/minter/errors.func e2f807de2081e62c44df7244d9d8a
7ee5ac175e9

CWF contracts/wallet.func c1cbebd12fa6934c6da40c3dce400
8452d1e0b07

CCPF contracts/common/params.func 61a6f72c31a3038281dd07dd4291
4921466541cf

CSOF contracts/standard/op.func 54552571425d29862990920ab668
a8159b6639ec

STO contracts/proxy/proxy_lst_ton/stor
age.func

ef87244b55d893c6ade698bde0ed
940ae99d5523

OP contracts/proxy/proxy_lst_ton/op.f
unc

44b3f1ce4910a6cdaa8e833f88b1e
006e5b6f235

PLT contracts/proxy/proxy_lst_ton/prox
y_lst_ton.func

a175eee04fc15e35031ca581f2a50
25448ef669f

STO1 contracts/proxy/proxy_whale2/stor
age.func

9e25b08626580c80734fa175ea5ac
9c9cdb98055

PW2 contracts/proxy/proxy_whale2/pro
xy_whale2.func

aa82f2d3d6a9ce167386c99fc9977
92ed0f01326

3/21

UTI contracts/proxy/proxy_ton/withdra
w/utils.func

9485632a51f3b64f5c5653c5a82dd
6e7967cc816

STO2 contracts/proxy/proxy_ton/withdra
w/storage.func

388131f83024d8a2ffb2b1d053200
9dfdd0fbf03

PTO contracts/proxy/proxy_ton/proxy_t
on.func

17d5c3896816a1d66954fce48576f
5f28e93079c

STO3 contracts/proxy/proxy_ton/storag
e.func

6598cee3162365f333f20d1f9bdd1
d0014b1e672

OP3 contracts/proxy/proxy_ton/op.func 2c99197e064821d8b6f04af433455
5d69fe52fbf

PAR7 contracts/minter/params.func d0bae9dc558cd153cd0fc7af19607
69ebe22057b

STO7 contracts/minter/storage.func 5bbded139224ebe0094f601e25e8
11e49247ee04

OP6 contracts/minter/op.func 525e74ff4ff131f461574267fce5168
7281c916c

UTI3 contracts/common/utils.func 366bd312b95b0b726b391f792e22
62c15536fd93

OP7 contracts/common/op.func 7b0f61e033cbb87817b55fdbe556f
6fdda40e0b6

ERR5 contracts/common/errors.func 17d06cdc21cc479be250a2680a39
864cf1195004

MIN1 contracts/minter.func 25cc4dd2b8214ba8edcf7780be57
23fa576ffbbc

PAR2 contracts/proxy/proxy_ton/withdra
w/params.func

a9d918d08194b2faa1225e1d7aec
7d01cda7ec21

4/21

WIT contracts/proxy/proxy_ton/withdra
w/withdraw.func

50997be4ad0ad4270df9ed72ab5c
7bccb6ddead0

5/21

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 6 0

Informational 0 0 0

Minor 1 1 0

Medium 2 2 0

Major 3 3 0

Critical 0 0 0

6/21

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

7/21

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

8/21

2 Summary

This report has been commissioned by UTonic to identify any potential issues and
vulnerabilities in the source code of the UTonic smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

MIN-1 Front-running the price Update
Allows Users to Consistently Make
a Profit

Major Fixed

MIN-2 Single-step Ownership Transfer
Can be Dangerous

Medium Fixed

MIN-3 Restrict proxy_id to Proxies
Capable of Handling Burn
Messages

Minor Fixed

PLT-1 Refund User’s LST Ton on
Operation Failure

Major Fixed

WIT-1 Fee Calculation Error Medium Fixed

MIN1-1 Centralization Risk Major Fixed

9/21

3 Participant Process

Here are the relevant actors with their respective abilities within the UTonic Smart Contract :
User

User can transfer uTON via the message op == JETTON::OP::TRANSFER .

User can burn uTON to exchange for TON via the message op == JETTON::OP::BUR .

User can transfer lst_ton to mint uTON via the message op ==

JETTON::OP::TRANSFER_NOTIFICATION .

User can withdraw TON via the message op == WITHDRAW::OP::WITHDRAW .

User can mint uTON via the message op == COMMON::OP::STAKE .

Admin

Admin can change the admin via the message op == PROXYLST::UPDATE_ADMIN .

Admin can change lst_ton_price via the message op == PROXYLST::UPDATE_PRICE .

Admin can change lst_ton_wallet via the message op ==

PROXYLST::UPDATE_PROXYLST_WALLET .

Admin can change lst_ton_receiver_address via the message op ==

PROXYLST::UPDATE_LST_TON_RECEIVER .

Admin can send lst_ton to lst_ton_receiver_address via the message op ==

PROXYLST::SEND_LST_TON .

Admin can change the capacity size via the message op ==

PROXYLST::UPDATE_CAPACITY .

Admin can change ton_receiver_address via the message op ==

PROXY_TON::OP::UPDATE_RECEIVER .

Admin can send TON via the message op == PROXY_TON::OP::SEND_TON .

Admin can change ton_receiver_address via the message op ==

PROXY_WHALE2::OP::UPDATE_TON_RECEIVER .

Admin can change price via the message op == MINTER::OP::UPDATE_PRICE .

Admin can change price via the message op == MINTER::OP::UPDATE_PRICE_INC .

10/21

Admin can update the whitelist via the message op ==

MINTER::OP::UPDATE_PROXY_WHITELIST .

Admin can upgrade via the message op == MINTER::OP::UPDATE_CODE_AND_DATA .

Whale

Whale can change uton_receiver_address via the message op ==

PROXY_WHALE2::OP::UPDATE_UTON_RECEIVER .

11/21

4 Findings

MIN-1 Front-running the price Update Allows Users to
Consistently Make a Profit

Severity: Major

Status: Fixed

Code Location:

contracts/minter.func#248-260

Descriptions:

When users stake and burn, the protocol exchanges based on the price . As long as the

price has not changed, the longer a user stakes, the more ton they will receive upon

burning.

 ;;;; calculate ton amount calculate ton amount
 int timestamp int timestamp == nownow(());;
 int today int today == get_dayget_day((timestamptimestamp));;
 int price int price == get_priceget_price((last_price_daylast_price_day,, last_price last_price,, price_inc price_inc,, today today));;
 int ton_amount int ton_amount == get_ton_amountget_ton_amount((uton_amountuton_amount,, price price));;

The admin has the ability to update the price .

 ifif ((op op ==== MINTERMINTER::::OPOP::::UPDATE_PRICEUPDATE_PRICE)) {{
 load_global_dataload_global_data(());;
 throw_unlessthrow_unless((COMMONCOMMON::::ERRERR::::UNAUTHORIZEDUNAUTHORIZED,, equal_slicesequal_slices((sender_addresssender_address,,
admin_addressadmin_address))));;

 int new_price int new_price == in_msg_body in_msg_body~~load_uintload_uint((6464));;
 int new_price_inc int new_price_inc == in_msg_body in_msg_body~~load_uintload_uint((6464));;
 int today int today == get_current_dayget_current_day(());;
 last_price_day last_price_day == today today;;
 last_price last_price == new_price new_price;;
 price_inc price_inc == new_price_inc new_price_inc;;
 save_global_datasave_global_data(());;
 returnreturn (());;
 }}

12/21

The issue arises when users can front-run the admin's price update, allowing them to burn

before the price changes. This ensures that users consistently profit from their actions.

Suggestion:

It is recommended to perform a double check when the user withdraws.

Resolution:

The client have modified the withdrawal process. When users withdraw, a callback

mechanism will be used to obtain the latest price from the uTON-minter and take the

minimum with the locked-in price at that time, in order to avoid this situation.

13/21

MIN-2 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Fixed

Code Location:

contracts/minter.func#239-246

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. If op == MINTER::OP::UPDATE_ADMIN , the protocol directly changes

admin_address to new_admin_address . This one-step transfer of admin rights poses the

aforementioned risks.

 ifif ((op op ==== MINTERMINTER::::OPOP::::UPDATE_ADMINUPDATE_ADMIN)) {{
 load_global_dataload_global_data(());;
 throw_unlessthrow_unless((COMMONCOMMON::::ERRERR::::UNAUTHORIZEDUNAUTHORIZED,, equal_slicesequal_slices((sender_addresssender_address,,
admin_addressadmin_address))));;
 slice new_admin_address slice new_admin_address == in_msg_body in_msg_body~~load_msg_addrload_msg_addr(());;
 admin_address admin_address == new_admin_address new_admin_address;;
 save_global_datasave_global_data(());;
 returnreturn (());;
 }}

Suggestion:

It is recommended to use a two-step ownership transfer pattern.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/21

MIN-3 Restrict proxy_id to Proxies Capable of Handling Burn
Messages

Severity: Minor

Status: Fixed

Code Location:

contracts/minter.func#141-142

Descriptions:

In the uton minter contract, when op == JETTON::OP::BURN_NOTIFICATION , it checks

whether the proxy_id is in the whitelist, as shown below:

((slice address_typeslice address_type,, int has_address int has_address)) == proxy_whitelist proxy_whitelist..udict_getudict_get??((3232,, proxy_id proxy_id));;
throw_unlessthrow_unless((MINTERMINTER::::ERRERR::::INVALID_PROXY_IDINVALID_PROXY_ID,, has_address has_address));;

There are currently three different proxies in the whitelist, but only proxy_ton can handle

burn and withdraw messages. Therefore, proxy_id should be restricted to proxies that can

process burn messages.

Suggestion:

It is recommended to restrict the proxy_id here to proxies that can handle burn messages.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/21

PLT-1 Refund User’s LST Ton on Operation Failure

Severity: Major

Status: Fixed

Code Location:

contracts/proxy/proxy_lst_ton/proxy_lst_ton.func#85-144

Descriptions:

In proxy_lst_Ton , when the message op == JETTON::OP::TRANSFER_NOTIFICATION , the

proxy_stake operation will be executed. However, if proxy_stake fails, for example, when

the following condition check is not passed:

throw_unlessthrow_unless((PROXYLSTPROXYLST::::ERRERR::::CAPACITY_NOT_ENOUGHCAPACITY_NOT_ENOUGH,, capacity capacity >=>= lst_ton_amount lst_ton_amount));;

the user’s lst Ton Jetton will still remain in Wallet_Proxy_lst_Ton. In such a case, consider

refunding the user’s lst Ton. Uncertain whether op == PROXYLST::SEND_LST_TON is intended

to refund the user’s lst Ton. Additionally, in the proxy_whale2 and proxy_ton contracts, if the

minting process of uTon fails, there is still no operation to refund the user’s Ton.

Suggestion:

It is recommended to refund the user’s lst Ton in such cases.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/21

WIT-1 Fee Calculation Error

Severity: Medium

Status: Fixed

Code Location:

contracts/proxy/proxy_ton/withdraw/withdraw.func#101-109

Descriptions:

In the withdraw contract, when handling the message with op ==

WITHDRAW::OP::WITHDRAW , msg_value deducts fwd_fee as follows: msg_value -=

(storage_fee + WITHDRAW::WITHDRAW_FEE + fwd_fee); however, the message sending mode

is 0, which is incorrect. If fwd_fee is deducted, the message sending mode should be 1.

Additionally, the msg_value check here is missing one fwd_fee in the calculation.

 throw_unlessthrow_unless((
 COMMONCOMMON::::ERRERR::::INSUFFICIENT_VALUEINSUFFICIENT_VALUE,,
 msg_value msg_value >> MINTERMINTER::::QUERY_FEEQUERY_FEE
 ++ fwd_fee fwd_fee
 ++ WITHDRAWWITHDRAW::::QUERY_ACK_FEEQUERY_ACK_FEE
 ++ fwd_fee fwd_fee
 ++ PROXY_TONPROXY_TON::::WITHDRAW_FEEWITHDRAW_FEE
));;

Suggestion:

It is recommended to follow the solution described in the explanation.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/21

MIN1-1 Centralization Risk

Severity: Major

Status: Fixed

Code Location:

contracts/test/jetton/minter.func#289-303

Descriptions:

The contract has a centralization risk issue where the administrator has the authority to

arbitrarily upgrade the contract and modify prices. This can be observed in the following

code snippet:

ifif ((op op ==== MINTERMINTER::::OPOP::::UPDATE_CODE_AND_DATAUPDATE_CODE_AND_DATA)) {{
 load_global_dataload_global_data(());;
 throw_unlessthrow_unless((COMMONCOMMON::::ERRERR::::UNAUTHORIZEDUNAUTHORIZED,, equal_slicesequal_slices((sender_addresssender_address,,
admin_addressadmin_address))));;
 int has_code int has_code == in_msg_body in_msg_body~~load_uintload_uint((11));;
 ifif ((has_codehas_code)) {{
 cell code cell code == in_msg_body in_msg_body~~load_refload_ref(());;
 set_codeset_code((codecode));;
 }}
 int has_data int has_data == in_msg_body in_msg_body~~load_uintload_uint((11));;
 ifif ((has_datahas_data)) {{
 cell data cell data == in_msg_body in_msg_body~~load_refload_ref(());;
 set_dataset_data((datadata));;
 }}
 returnreturn (());;
}}

This logic allows the administrator to update the contract code and data, which introduces a

risk of centralized control and potential manipulation.

Suggestion:

It is recommended to use a multi-signature mechanism or similar methods to mitigate the

centralization risk.

Resolution:

18/21

This issue has been fixed. The client has adopted our suggestions.

19/21

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

20/21

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

21/21

	558_page1.pdf
	558_page2.pdf

