
Ton Staking
Audit Report

Fri Sep 27 2024

contact@bitslab.xyz https://twitter.com/tonbit_

Ton Staking Audit Report

1 Executive Summary

1.1 Project Information

Description A TON stake protocol

Type DeFi

Auditors TonBit

Timeline Tue Sep 10 2024 - Fri Sep 27 2024

Languages Tact

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/CyberChargeOrg/TonStakingContract.git

Commits 03b9327321c581fff045642d29f6ebdf6bba5479

1/12

https://github.com/CyberChargeOrg/TonStakingContract.git
https://github.com/CyberChargeOrg/TonStakingContract/tree/03b9327321c581fff045642d29f6ebdf6bba5479

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

ST2 stakeTon2.tact 3cd8775c8c141466b34235f9f3fe35
ebb9fbdcb8

2/12

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 0 3

Informational 0 0 0

Minor 1 0 1

Medium 2 0 2

Major 0 0 0

Critical 0 0 0

3/12

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

4/12

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/12

2 Summary

This report has been commissioned by Cyber Charge to identify any potential issues and
vulnerabilities in the source code of the StakeTon2 smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 3 issues of varying severity, listed below.

ID Title Severity Status

ST2-1 Missing Pause Function Medium Acknowledged

ST2-2 Single-step Ownership Transfer
Can be Dangerous

Medium Acknowledged

ST2-3 Lack of Parameter Validation Minor Acknowledged

6/12

3 Participant Process

Here are the relevant actors with their respective abilities within the StakeTon2 Smart
Contract :
Owner

The owner can start staking through the MsgSetStart message.

The owner can set minTonForStorage and gasConsumption through the

MsgGasSet message.

The owner can set minTonForStorage and gasConsumption for subcontracts

through the MsgGasSetSub message.

The owner can withdraw remaining TON from the contract through the delThis

message.

The owner can withdraw remaining TON from the subcontracts through the

MsgStakeAddrDel message.

The owner can withdraw excess TON through the MsgStakeAddrWithdraw message.

User

Users can stake TON through the MsgStake message.

Users can withdraw TON through the MsgWithdraw message.

7/12

4 Findings

ST2-1 Missing Pause Function

Severity: Medium

Status: Acknowledged

Code Location:

stakeTon2.tact#79

Descriptions:

The contract contains multiple pause checks, such as require(!self.bPause, "paused");

however, it lacks the pause functionality.

Suggestion:

It is recommended to add pause functionality.

8/12

ST2-2 Single-step Ownership Transfer Can be Dangerous

Severity: Medium

Status: Acknowledged

Code Location:

stakeTon2.tact#2

Descriptions:

Single-step ownership transfer means that if a wrong address was passed when transferring

ownership or admin rights it can mean that role is lost forever. If the admin permissions are

given to the wrong address within this function, it will cause irreparable damage to the

contract. Below is the official documentation explanation from OpenZeppelin：

https://docs.openzeppelin.com/contracts/4.x/api/access

Ownable is a simpler mechanism with a single owner "role" that can be assigned to a single

account. This simpler mechanism can be useful for quick tests but projects with production

concerns are likely to outgrow it.

The stakeTon2 contract references the ownable library, which has a single-step ownership

transfer process. This is quite risky.

importimport "@stdlib/ownable""@stdlib/ownable";;

https://github.com/ton-core/tact/blob/main/stdlib/libs/ownable.tact

Suggestion:

It is recommended to use a two-step ownership transfer pattern.

9/12

https://docs.openzeppelin.com/contracts/4.x/api/access
https://github.com/ton-core/tact/blob/main/stdlib/libs/ownable.tact

ST2-3 Lack of Parameter Validation

Severity: Minor

Status: Acknowledged

Code Location:

stakeTon2.tact#238-249

Descriptions:

The MsgSetStart message is used to set the start and end times for staking, but it lacks

parameter validation. Specifically, it is essential to assert that the end time is greater than

the start time to prevent logical errors or misuse.

receivereceive((msgmsg:: MsgSetStartMsgSetStart)) {{
 selfself..requireOwnerrequireOwner(());;
 ifif ((msgmsg..bStartbStart ==== 11)){{
 selfself..bStartbStart == truetrue;;
 }} elseelse {{
 selfself..bStartbStart == falsefalse;;
 }}
 selfself..startTimestartTime == msg msg..startTimestartTime;;
 selfself..endTimeendTime == msg msg..endTimeendTime;;
 ifif ((selfself..endTimeendTime <=<= self self..startTimestartTime)) {{
 revertrevert(("End time must be greater than start time.""End time must be greater than start time."));;
 }}
 selfself..rebackTonrebackTon((sendersender(())));;
}}

Suggestion:

It is recommended to implement parameter validation checks.

10/12

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

11/12

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

12/12

	545_page1.pdf
	545_page2.pdf

