
ThunderFinance
Audit Report

Mon May 13 2024

contact@scalebit.xyz https://twitter.com/tonbit_

ThunderFinance Audit Report

1 Executive Summary

1.1 Project Information

Description Thunder Finance offers a one-stop liquidity mining solution ⛏️
that enables any protocol to quickly establish a farming pool

Type DeFi

Auditors TonBit

Timeline Thu Apr 25 2024 - Mon May 13 2024

Languages Tact

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Ton-Dynasty/ThunderFinance

Commits 3ff6f55f76a50c8083d218828c7f38122bd16f7a
f6aa23b467bc2ff158bc385be89edae20377bc59
8c821a9f41d6ca1cd8f99a9ffe43f81b1ec729af
9527cc48f95cf145ad931bb56db13dd791382643
4e4910f49c95d28153e033533a2b85ffef41590d
7bcf49681cdb7d3b856712a2134745a900c60232

1/25

https://github.com/Ton-Dynasty/ThunderFinance
https://github.com/Ton-Dynasty/ThunderFinance/tree/3ff6f55f76a50c8083d218828c7f38122bd16f7a
https://github.com/Ton-Dynasty/ThunderFinance/tree/f6aa23b467bc2ff158bc385be89edae20377bc59
https://github.com/Ton-Dynasty/ThunderFinance/tree/8c821a9f41d6ca1cd8f99a9ffe43f81b1ec729af
https://github.com/Ton-Dynasty/ThunderFinance/tree/9527cc48f95cf145ad931bb56db13dd791382643
https://github.com/Ton-Dynasty/ThunderFinance/tree/4e4910f49c95d28153e033533a2b85ffef41590d
https://github.com/Ton-Dynasty/ThunderFinance/tree/7bcf49681cdb7d3b856712a2134745a900c60232

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

DAT contracts/packages/utils/data.fc cad660781bf6bde54f9bc42d4dd3
e892a37c473a

STD contracts/imports/stdlib.fc 2f104cd568a4cebb1c4112ecf8979
800f0672575

TMC contracts/ton_master_chef.tact 72f6626f3d90624e0f2e33bd180ba
a6fbc475c68

JMC contracts/jetton_master_chef.tact e4992d942c37c7a11e4dfbfc9b651
1bee7046cd4

MCH contracts/mini_chef.tact fb930849417bae1683db3fcf0ea11
9f4af4e2dfe

EST contracts/packages/utils/Estimatab
le.tact

b02f76bf1cbba6b8f2fb65618908d
e7d9e54d9c5

LOC contracts/packages/utils/Lockable.t
act

217ab7c9dbdc3988d7d8cad77355
27c655b2341d

JMA contracts/packages/token/jetton/Je
ttonMaster.tact

9b124fc400f6279e47c6b6055b710
b3565742718

JWA contracts/packages/token/jetton/Je
ttonWallet.tact

43ef2a5f8d62c56535bbb22466551
dd987ab9b83

MES contracts/messages.tact 9dafc7919f3109fe7393706328e44
b78072b1428

CTMCT contracts/trait_master_chef.tact 1beb5020774e509b4ed31cf6f877e
f090c4870da

2/25

KIT contracts/kitchen.tact 4a9c93518a378d98068086165ae3
aca8058f8b47

JET contracts/jetton.tact b7a30c7f520c155cbc1654d7bb847
03dea603dec

TMC contracts/ton_master_chef.tact c3c5b960ba4d4f959a71270568fd6
824c43b9b76

JMC contracts/jetton_master_chef.tact 065c11d10536b1cc49b060732425
7548f84cc3a3

MCH contracts/mini_chef.tact ea42693af7846191c91a6fc4750a4
801d421813d

JET contracts/packages/mock/jetton.ta
ct

aed3f67e61dd06a4dd0f69a8d128
050d6ae462e8

MES contracts/messages.tact 4afa7608d6b964df5ec8b8a649401
3f87b6a8f40

TMC1 contracts/trait_master_chef.tact df1960679247baf4d22bf76e2de1b
30b4e2693fd

KIT contracts/kitchen.tact 69563204f2950274843232e889e9a
407488221f9

3/25

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 12 12 0

Informational 3 3 0

Minor 5 5 0

Medium 3 3 0

Major 0 0 0

Critical 1 1 0

4/25

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

5/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/25

2 Summary

This report has been commissioned by Perman Lab to identify any potential issues and
vulnerabilities in the source code of the ThunderFinance smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 12 issues of varying severity, listed below.

ID Title Severity Status

JMC-1 Rewards for Users not Present in
JettonMasterChef cannot be

Extracted

Medium Fixed

JMC-2 Duplicate Code Informational Fixed

JMC-3 Unused receive() function Informational Fixed

MES-1 Unused Field
thunderMintJettonWallet in

Messages

Minor Fixed

MES-2 Message Repeat Definition Informational Fixed

TMC-1 Logic Flaw in LP Supply Adjustment Critical Fixed

TMC-2 Unchecked Start and End Times Minor Fixed

TMC1-1 Maliciously Initialisable Contracts Medium Fixed

TMC1-2 Uncalculated Gas and
Unprocessed Bounce

Medium Fixed

TMC1-3 Inconsistent Handling of Contracts
for Return

Minor Fixed

7/25

TMC1-4 Mismatch of Judgement Conditions Minor Fixed

TMC1-5 Redundant Field createdAt in
JettonMasterChef and
TonMasterChef Contracts

Minor Fixed

8/25

3 Participant Process

Here are the relevant actors with their respective abilities within the ThunderFinance Smart
Contract :
Owner

The owner can send a SetUpJettonMC message to initialize JettonMasterChef

The owner can send a SetUpTonMC message to initialize the TonMasterChef

contract and transfer the awarded Ton tokens to the contract

The owner can send a JettonTransferNotification message to deposit reward tokens

into the JettonMasterChef contract

The owner can send an AddPool message to the JettonMasterChef or

TonMasterChef contract to add a new pool to the contract

The owner can send a Set message to the JettonMasterChef or TonMasterChef

contract to change the reward allocation ratio for a given pool

The owner can send a ‘Redeem’ message to the JettonMasterChef or TonMasterChef

contract to withdraw the reward tokens generated when there is no user deposit. User

Users can send a JettonTransfer message to send a lpToken to the JettonWallet

contract corresponding to JettonMasterChef or TonMasterChef and add a

forward_ton_amount to the message to deposit lpTokens to the JettonMasterChef

or TonMasterChef contract with a JettonTransferNotification message to deposit the

lpToken for a reward

Users can send Withdraw messages to JettonMasterChef or TonMasterChef

contracts to withdraw lpToken previously deposited

Users can send Harvest messages to JettonMasterChef or TonMasterChef

contracts to withdraw rewards earned during the deposit period

Users can send UpdatePool messages to JettonMasterChef or TonMasterChef

contracts to update the reward allocation parameters in the corresponding pool

Users can send a WithdrawAndHarvest message to the JettonMasterChef or

TonMasterChef contract to withdraw the deposited lpToken and the rewards

generated during the deposit

9/25

4 Findings

JMC-1 Rewards for Users not Present in JettonMasterChef
cannot be Extracted

Severity: Medium

Status: Fixed

Code Location:

contracts/jetton_master_chef.tact#95-105;

contracts/ton_master_chef.tact#98-104

Descriptions:

When there was a user mining in JettonMasterChef or TonMasterChef , but the user

suddenly withdraws the principal and stops mining, the subsequent rewards cannot be

withdrawn. For example:

1. The staking period is 10 days.

2. On the second day, the first user deposits lpToken into the contract and starts

mining, at which point the rewards generated on the first day are transferred to the

deployer.

3. If the user withdraws the principal on the third day and terminates mining, the rewards

from the third to the tenth day cannot be withdrawn.

Suggestion:

It is recommended to add logic for extracting window period rewards.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

10/25

JMC-2 Duplicate Code

Severity: Informational

Status: Fixed

Code Location:

contracts/jetton_master_chef.tact#104-106

Descriptions:

The first three lines of the snippet when processing the WithdrawAndHarvestReply

message can be replaced by the requireMiniChef function.

let initCode: StateInit = self._calculateMiniChefInit(msg.sender);let initCode: StateInit = self._calculateMiniChefInit(msg.sender);
 let expectedSender: Address = contractAddress(initCode);let expectedSender: Address = contractAddress(initCode);
 require(expectedSender == sender(), "unexpected sender");require(expectedSender == sender(), "unexpected sender");

Suggestion:

It is recommended to use the requireMiniChef function instead.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/25

JMC-3 Unused receive() function

Severity: Informational

Status: Fixed

Code Location:

contracts/jetton_master_chef.tact#37

Descriptions:

The receive() function in the JettonMasterChef contract is not used.

Suggestion:

It is recommended that unused functions be removed.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/25

MES-1 Unused Field thunderMintJettonWallet in Messages

Severity: Minor

Status: Fixed

Code Location:

contracts/messages.tact#24

Descriptions:

The thunderMintJettonWallet field in message BuildJettonMasterChef and

SetUpJettonMC is not used in the contract.

Suggestion:

It is recommended that unused fields be deleted.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/25

MES-2 Message Repeat Definition

Severity: Informational

Status: Fixed

Code Location:

contracts/messages.tact#4-19;

contracts/packages/token/jetton/JettonWallet.tact#10-25

Descriptions:

The JettonTransfer and JettonTransferNotification messages are defined duplicated in the

JettonWallet.tact and message.tact files.

Suggestion:

It is recommended that the definition in one of the files be deleted.

Resolution:

This issue has been fixed. The JettonWallet contract is test code.

14/25

TMC-1 Logic Flaw in LP Supply Adjustment

Severity: Critical

Status: Fixed

Code Location:

contracts/trait_master_chef.tact#59

Descriptions:

When a user initiates a deposit request, the corresponding lpSupply in the pool is

increased accordingly. However, there is no corresponding decrease in lpSupply when

withdrawing. This is illogical, as lpSupply is used to calculate the accRewardPerShare in

the pool. If its value is incorrect, it will affect the equity of the entire user base in the pool,

leading to significant discrepancies between the expected and actual earnings for users.

If lpSupply is not deducted during withdrawals, each user deposit will result in lpSupply

growing indefinitely. Since lpSupply is used to calculate accRewardPerShare , this will

cause accRewardPerShare to decrease over time, approaching zero. Consequently, users

will be unable to receive subsequent rewards.

The two screenshots below depict Sushi's code. It can be observed that Sushi directly

deducts lpSupply during withdrawal. When obtaining lpSupply in the updatePool

function, it directly retrieves the balance, thus obtaining the post-withdrawal value as well.

15/25

Suggestion:

It is recommended that lpSupply be appropriately decreased when users withdraw funds.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

16/25

TMC-2 Unchecked Start and End Times

Severity: Minor

Status: Fixed

Code Location:

contracts/trait_master_chef.tact#155-162

Descriptions:

The Master_chef contract was initialised without checking the sizes of StartTime and

Deadline , which if equal could lead to a divide-by-zero error when calculating

rewardPerSecond.

Suggestion:

It is recommended to check the value of startTime and deadline when initialising the

contract.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

17/25

TMC1-1 Maliciously Initialisable Contracts

Severity: Medium

Status: Fixed

Code Location:

contracts/ton_master_chef.tact#36-74

Descriptions:

When the kitchen contract receives the BuildTonMasterChef message to deploy the

tonMasterChef contract and sends the SetUpTonMC message to initialise it, if the

initialisation incoming Ton tokens are not enough then there may be a situation where the

deployment succeeds but the initialisation fails, this time, if there is a malicious actor who

sends the malicious SetUpTonMC message to the tonMasterChef contract that has

already been successfully deployed, this will result in the parameters being maliciously

configured in the contract.

Suggestion:

It is recommended that permissions are checked at initialisation time.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

18/25

TMC1-2 Uncalculated Gas and Unprocessed Bounce

Severity: Medium

Status: Fixed

Code Location:

contracts/ton_master_chef.tact;

contracts/jetton_master_chef.tact;

contracts/trait_master_chef.tact

Descriptions:

Contracts in the project do not perform calculations about gas consumption in the contract

when performing operations such as Deposit , Withdraw , Harvest , etc., and do not

perform bounce processing in any of the JettonMasterChef and TonMasterChef related

contracts, which may lead to inconsistency in the state of the contract.

Example:

1. User A prepares for a Deposit operation and transfers the lpToken to the wallet

corresponding to the lpToken in JettonMasterChef .

2. The JettonMasterChef contract receives the JettonTransferNotification message and

calls the internal userDeposit function.

3. The function internally increases the value of pool.lpSupply and sends a UserDeposit

message to the user's MiniChef contract.

4. But the value passed in by the user is not enough to perform all the logic in MiniChef ,

at this point MiniChef throws an exception and does not record the number of

lpTokens deposited by the user, but JettonMasterChef has already incremented the

lp.totalSupply and has not sent the UserDeposit message to the user's MiniChef

contract totalSupply and has not returned the user's deposited lpToken to the user.

Suggestion:

It is recommended to add logic to the contract that handles bounce and calculates

whether the current value is sufficient to cover the gas required to execute the contract.

Resolution:

19/25

This issue has been fixed. The client added a constraint requiring a minimum gas threshold

for user deposit operations.

20/25

TMC1-3 Inconsistent Handling of Contracts for Return

Severity: Minor

Status: Fixed

Code Location:

contracts/ton_master_chef.tact#40,48-53,60

Descriptions:

The contract handles SetUpTonMC messages by throwing an exception for exceptions that

have already been initialised in line 40, by destroying the contract for exceptions where the

rewardPersecond value is less than zero in line 48, and by returning directly to the contract

for exceptions where the number of Ton's passed in does not match the parameters in line

60.

Suggestion:

It is recommended that the treatment of the three exceptions be consistent.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

21/25

TMC1-4 Mismatch of Judgement Conditions

Severity: Minor

Status: Fixed

Code Location:

contracts/ton_master_chef.tact#60;

contracts/jetton_master_chef.tact#74

Descriptions:

The if logic judgment conditions for JettonTransferNotification and SetUpTonMC are

inconsistent when adding reward tokens to a contract.

if(msg.amount < expectedAmount || now() > self.deadline) {if(msg.amount < expectedAmount || now() > self.deadline) {

if (remainTon < expectedTon) {if (remainTon < expectedTon) {

Suggestion:

It is recommended that the judgment conditions be changed to be consistent.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

22/25

TMC1-5 Redundant Field createdAt in JettonMasterChef and
TonMasterChef Contracts

Severity: Minor

Status: Fixed

Code Location:

contracts/ton_master_chef.tact#13;

contracts/jetton_master_chef.tact#13;

contracts/trait_master_chef.tact#21

Descriptions:

In the files jetton_master_chef.tact and ton_master_chef.tact , there exists a field called

createdAt , which is initialized to record the contract creation time but is not utilized within

the contract. Additionally, the functions getJettonMasterChefData() and

getTonMasterChefData() do not return this field, rendering it unnecessary in the contract.

createdAt: Int = 0; createdAt: Int = 0;

Suggestion:

It is recommended to remove the redundant field createdAt from the contract files

jetton_master_chef.tact and ton_master_chef.tact since it is not utilized within the

contract and is not returned by any exposed functions.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

23/25

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

25/25

	380_page1.pdf
	380_page2.pdf

