
InterBridge Relayer
Audit Report

Fri Oct 25 2024

contact@bitslab.xyz https://twitter.com/tonbit_

InterBridge Relayer Audit Report

1 Executive Summary

1.1 Project Information

Description InterBridge is a liquidity pool-based bridge that allows users
to add liquidity on Solana and TON. Users lock tokens on one
chain, and InterBridge's infrastructure releases
corresponding tokens to the users on the other chain.

Type Bridge

Auditors TonBit

Timeline Fri Oct 11 2024 - Fri Oct 18 2024

Languages Typescript

Platform Ton,Solana

Methods Dependency Check, Static Analysis, Manual Review

Source Code https://github.com/soonlabs/cross-chain-bridge-relayer
https://github.com/soonlabs/cross-chain-bridge-data-sync

Commits https://github.com/soonlabs/cross-chain-bridge-relayer:

bf2d541de61c02ac26e9d08ce4b4af5487429e88
ef26ecf8c7ff34707e120213ef8537836c09d10b

https://github.com/soonlabs/cross-chain-bridge-data-sync:

357b7149d0834b1ffaa5437d939b9c3123efc7a4
afb16098c2745edfe3e1942a31d15110cd669c36

1/23

https://github.com/soonlabs/cross-chain-bridge-relayer
https://github.com/soonlabs/cross-chain-bridge-data-sync
https://github.com/soonlabs/cross-chain-bridge-relayer/tree/bf2d541de61c02ac26e9d08ce4b4af5487429e88
https://github.com/soonlabs/cross-chain-bridge-relayer/tree/ef26ecf8c7ff34707e120213ef8537836c09d10b
https://github.com/soonlabs/cross-chain-bridge-data-sync/tree/357b7149d0834b1ffaa5437d939b9c3123efc7a4
https://github.com/soonlabs/cross-chain-bridge-data-sync/tree/afb16098c2745edfe3e1942a31d15110cd669c36

1.2 Files in Scope

The following are the directories of the original reviewed files.

Directory

https://github.com/soonlabs/cross-chain-bridge-relayer/src/transaction

https://github.com/soonlabs/cross-chain-bridge-data-sync/src/tx-sync

2/23

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 8 5 3

Informational 2 0 2

Minor 0 0 0

Medium 3 2 1

Major 2 2 0

Critical 1 1 0

3/23

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Integer overflow/underflow

Infinite Loop

Infinite Recursion

Race Condition

Traditional Web Vulnerabilities

Memory Exhaustion Attack

Disk Space Exhaustion Attack

Side-channel Attack

Denial of Service

Replay Attacks

Double-spending Attack

Eclipse Attack

Sybil Attack

Eavesdropping Attack

Business Logic Issues

Contract Virtual Machine Vulnerabilities

Coding Style Issues

4/23

1.5 Methodology

Our security team adopted "Dependency Check", "Automated Static Code Analysis", and
"Manual Review" to conduct a comprehensive security test on the code in a manner
closest to real attacks. The main entry points and scope of the security testing are specified
in the "Files in Scope", which can be expanded beyond the scope according to actual testing
needs. The main types of this security audit include:

(1) Dependency Check

A comprehensive check of the software's dependency libraries was conducted to ensure all
external libraries and frameworks are up-to-date and free of known security vulnerabilities.

(2) Automated Static Code Analysis

Static code analysis tools were used to find common programming errors, potential security
vulnerabilities, and code patterns that do not conform to best practices.

(3) Manual Review

The scope of the code is explained in section 1.2.

(4) Audit Process

Clarify the scope, objectives, and key requirements of the audit.

Collect related materials such as software documentation, architecture diagrams, and

lists of dependency libraries to provide background information for the audit.

Use automated tools to generate a list of the software's dependency libraries and

employ professional tools to scan these libraries for security vulnerabilities, identifying

outdated or known vulnerable dependencies.

Select and configure automated static analysis tools suitable for the project, perform

automated scans to identify security vulnerabilities, non-standard coding, and

potential risk points in the code. Evaluate the scanning results to determine which

findings require further manual review.

Design a series of fuzz testing cases aimed at testing the software's ability to handle

exceptional data inputs. Analyze the issues found during the testing to determine the

defects that need to be fixed.

Based on the results of the preliminary automated analysis, develop a detailed code

review plan, identifying the focus of the review. Experienced auditors perform line-by-

5/23

line reviews of key components and sensitive functionalities in the code.

If any issues arise during the audit process, communicate with the code owner in a

timely manner. The code owners should actively cooperate (this may include providing

the latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

Necessary information during the audit process will be well documented in a timely

manner for both the audit team and the code owner.

6/23

2 Summary

This report has been commissioned by InterSOON with the objective of identifying any
potential issues and vulnerabilities within the source code of the InterBridge Relayer
repository, as well as in the repository dependencies that are not part of an officially
recognized library. In this audit, we have employed the following techniques to identify
potential vulnerabilities and security issues:

(1) Dependency Check

A comprehensive analysis of the software’s dependency libraries was conducted using the
dependency analysis tool.

(2) Automated Static Code Analysis

The code quality was examined using a code scanner.

(4) Manual Code Review

The primary focus of the manual code review was:

relayer

data-sync

During the audit, we identified 8 issues of varying severity, listed below.

ID Title Severity Status

FOR-1 Solana Address Conversion Causes
Cross-Chain Failures

Medium Fixed

SSE-1 Potential Delay in
processTransactions Function

Due to Insufficient Liquidity

Medium Acknowledged

SSE-2 Incorrect Use of DECIMALS May
Cause Cross-Chain Failures for
Users

Medium Fixed

7/23

https://github.com/soonlabs/cross-chain-bridge-relayer
https://github.com/soonlabs/cross-chain-bridge-data-sync

SSE-3 Relayer Should Verify Transaction
Execution Status and On-Chain
Status

Informational Acknowledged

TSE-1 Incorrect Token Contract Address
When Bridging from Solana to Ton
May Cause Potential Asset Loss

Major Fixed

TTS-1 A Single Ton or Solana Transaction
May Contain Multiple Events

Major Fixed

UTI-1 Insecure Authorization in
checkKey Function Due to Weak

Hashing Mechanism

Critical Fixed

YAR-1 Dependency Known Vulnerability Informational Acknowledged

8/23

3 Participant Process

Here are the relevant actors with their respective abilities within the InterBridge Relayer
repository :
Ton Contract:

1. Users on Ton call the contract for cross-chain operations.

2. Admin sets the contract parameters.

3. Relayer calls the contract to transfer funds from Solana.

Solana Contract:

1. Users on Solana call the contract for cross-chain operations.

2. Admin sets the contract parameters.

3. Relayer calls the contract to transfer funds from Ton.

User: Calls the contract on either Ton or Solana for cross-chain operations.
Admin: Sets contract parameters, LP whitelist, etc.
Relayer: Receives on-chain events from Ton or Solana and performs cross-chain operations.
LP: Liquidity Provider.

9/23

4 Findings

FOR-1 Solana Address Conversion Causes Cross-Chain Failures

Severity: Medium

Discovery Methods: Manual Review

Status: Fixed

Code Location:

src/utils/format.ts#9

Descriptions:

1. When users transfer assets from Ton to Solana, a 64-byte address is provided.

However, Solana addresses are 32 bytes, so the cross-chain bridge defaults to treating

the upper 32 bytes of the 64-byte address as invalid (filled entirely with 0x00).

2. Suppose a 64-byte cross-chain address is 0x00..00 + 0x00ff..ff ; the

bigintToSolanaAddr function removes the first 32 bytes of 0x00 and also removes

0x00 from valid Solana addresses, resulting in an address with only 31 bytes.

export function export function bigintToSolanaAddrbigintToSolanaAddr((addraddr:: bigint bigint)) {{
 returnreturn bs58 bs58..encodeencode((BufferBuffer..fromfrom((addraddr..toStringtoString((1616)),, 'hex'hex''))));;
}}

3. In the isValidSolanaAddress function, if the address length is not 32 bytes, an error is

returned.

exportexport constconst isValidSolanaAddressisValidSolanaAddress == ((addressaddress)) =>=> {{
 trytry {{
 constconst key key == newnew PublicKeyPublicKey((addressaddress));;
 returnreturn PublicKeyPublicKey..isOnCurveisOnCurve((keykey..toBytestoBytes(())));;
 }} catchcatch ((errorerror)) {{
 returnreturn falsefalse;;
 }}
}}

4. If a cross-chain target Solana address starts with 0x00 , the transfer will fail.

Suggestion:

10/23

Use a correct address conversion algorithm.

11/23

SSE-1 Potential Delay in processTransactions Function Due to
Insufficient Liquidity

Severity: Medium

Discovery Methods: Manual Review

Status: Acknowledged

Code Location:

src/transaction/solana.service.ts#103-107;

src/transaction/ton.service.ts#145-148

Descriptions:

In the processTransactions function, there is a potential delay when processing

transactions, particularly if the liquidity for a specific source token is insufficient. Below is the

relevant code snippet:

 ifif ((liquidityProviderBalance liquidityProviderBalance << SOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TXSOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TX)) {{
 awaitawait sendSlackMessagesendSlackMessage(('solana.service liquidity balance is less than ''solana.service liquidity balance is less than ' ++
SOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TXSOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TX));;

 returnreturn;;
 }};;

Currently, the function processes one transaction at a time. If the liquidity for a specific

sourceToken is insufficient (i.e., liquidityProviderBalance <

SOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TX), the function will not proceed to the next

transaction.

This design flaw can slow down transaction processing, as the function will repeatedly check

the same transaction without advancing to others. This may degrade overall system

performance and increase latency in transaction handling.

Suggestion:

To address this issue, it is advisable to implement a strategy where the function can process

other transactions while retrying the transaction with insufficient liquidity after a certain

period.

12/23

This could involve adding a mechanism to queue or defer the transaction for later

processing, thus ensuring that the processTransactions flow remains efficient.

Resolution:

The next version will handle multiple transactions simultaneously, which will address this

issue.

13/23

SSE-2 Incorrect Use of DECIMALS May Cause Cross-Chain
Failures for Users

Severity: Medium

Discovery Methods: Manual Review

Status: Fixed

Code Location:

src/transaction/solana.service.ts#283;

src/transaction/ton.service.ts#298

Descriptions:

When the relayer calculates whether the cross-chain amount exceeds the

"SOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TX" or

"TON_MAXIMUM_TRANSFER_CAPACITY_PER_TX," it uses the decimal of USDT. This may lead to

cross-chain failures for users.

 asyncasync sendTransactionsendTransaction((guidguid:: stringstring,, userAddress userAddress:: stringstring,, tokenAmount tokenAmount:: stringstring)) {{
 trytry {{
 ifif ((NumberNumber((tokenAmounttokenAmount)) // ((1010 ****
thisthis..envConfigenvConfig..SOLANA_SUPPORTED_TOKENSSOLANA_SUPPORTED_TOKENS..USDTUSDT..DECIMALSDECIMALS)) >>
SOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TXSOLANA_MAXIMUM_TRANSFER_CAPACITY_PER_TX)) {{
 returnreturn;;
 }}

Suggestion:

Calculate according to the decimals of different tokens

14/23

SSE-3 Relayer Should Verify Transaction Execution Status and
On-Chain Status

Severity: Informational

Discovery Methods:

Status: Acknowledged

Code Location:

src/transaction/solana.service.ts#366;

src/transaction/ton.service.ts#311

Descriptions:

When sending transactions on Solana or Ton, the relayer should check whether the

transaction has executed successfully and whether the block containing the transaction has

been finalized.

Suggestion:

1. Add a retry mechanism for failed transactions.

2. Confirm whether the block containing the transaction may be rolled back.

Resolution:

The relayer will execute the transaction only after waiting 1 minute for block confirmation.

15/23

TSE-1 Incorrect Token Contract Address When Bridging from
Solana to Ton May Cause Potential Asset Loss

Severity: Major

Discovery Methods: Manual Review

Status: Fixed

Code Location:

src/transaction/ton.service.ts#316

Descriptions:

1. When bridging from Solana to Ton, the relayer needs to correctly identify the token

type for the cross-chain transaction. However, in the sendTransaction function, all

token types are treated as USDT regardless of the actual type.

2. If there is a token X on Solana that is cheaper than USDT, an attacker could exploit this

by exchanging the cheaper token X for the more expensive USDT.

 asyncasync sendTransactionsendTransaction((guidguid:: stringstring,, userAddress userAddress:: stringstring,, tokenAmount tokenAmount:: stringstring)) {{
 trytry {{
 ////
//......other code......//......other code......
////
 // jetton minter contract// jetton minter contract
 constconst jettonMinterContract jettonMinterContract ==
JettonMinterJettonMinter..createFromAddresscreateFromAddress((AddressAddress..parseparse((thisthis..envConfigenvConfig..TON_SUPPORTED_TOKENSTON_SUPPORTED_TOKENS..
 // bridge gate contract// bridge gate contract
 constconst bridgeGate bridgeGate ==
thisthis..clientclient..openopen((BridgeGateBridgeGate..createFromAddresscreateFromAddress((AddressAddress..parseparse((thisthis..envConfigenvConfig..TON_BRIDGETON_BRIDGE

 constconst bridgeAmount bridgeAmount == BigIntBigInt((tokenAmounttokenAmount));;
 ////
//......other code......//......other code......
////

3. Currently supported cross-chain tokens include native SOL and TON tokens. The

following is the configuration file showing other supported token types.

16/23

 TON_SUPPORTED_TOKENSTON_SUPPORTED_TOKENS:: {{
 USDTUSDT:: """",,
 USDCUSDC:: """"
 }},,
 TON_BRIDGE_GATETON_BRIDGE_GATE:: "UQCYGovtmogjI_nVFLfu2QouyNLbwFQ9wxqorZUU6UTe5xND""UQCYGovtmogjI_nVFLfu2QouyNLbwFQ9wxqorZUU6UTe5xND",,
 SOLANA_RPC_URLSOLANA_RPC_URL:: """",,
 SOLANA_SUPPORTED_TOKENSSOLANA_SUPPORTED_TOKENS:: {{
 USDTUSDT:: """",,
 USDCUSDC:: """"
 }},,

Suggestion:

Correct the token contract address.

17/23

TTS-1 A Single Ton or Solana Transaction May Contain Multiple
Events

Severity: Major

Discovery Methods: Manual Review

Status: Fixed

Code Location:

src/tx-sync/chains/ton.tx.sync.service.ts#173;

src/tx-sync/chains/solana.tx.sync.service.ts#72

Descriptions:

1. The data-sync service, when retrieving cross-chain events, fetches the first cross-chain

event in the transaction.

2. A transaction may contain multiple cross-chain events. For example, a Solana

transaction is composed of multiple instructions, and each instruction can call the

"bridge_to_destination" function, leading to multiple cross-chain events within a single

transaction.

3. This situation may cause cross-chain failures for users.

4. getSignaturesForAddress could get all txs related to ProgramId. If the attacker sends

similar logs, the previous code may cause asset loss.

Suggestion:

1. In general, users should not construct multiple instructions within a single transaction.

2. It is recommended to include a warning in the project development documentation or

user manual, advising users against constructing multiple cross-chain operations

within a single transaction.

3. It is recommended to use another way to get all txs.

18/23

UTI-1 Insecure Authorization in checkKey Function Due to
Weak Hashing Mechanism

Severity: Critical

Discovery Methods: Manual Review

Status: Fixed

Code Location:

src/utils.ts#11-18

Descriptions:

The checkKey function uses an insecure authorization mechanism that relies on a weak

hashing function hashCode . Below is the code in question:

exportexport functionfunction checkKeycheckKey((keykey:: stringstring)) {{
 ifif ((key key ==== undefinedundefined)) returnreturn falsefalse;;
 constconst decrypt decrypt == hashCodehashCode((keykey));;
 ifif ((decrypt decrypt !=!= ADMIN_KEY_HASHADMIN_KEY_HASH)) {{
 returnreturn falsefalse;;
 }}
 returnreturn truetrue;;
}}

exportexport constconst hashCodehashCode == ((ss)) =>=> {{
 returnreturn s s..splitsplit((''''))..reducereduce((functionfunction ((aa,, b b)) {{
 a a == ((a a <<<< 55)) -- a a ++ b b..charCodeAtcharCodeAt((00));;
 returnreturn a a && a a;;
 }},, 00));;
}};;

The hashCode function is not a cryptographic hash function and is highly vulnerable to

collisions. It only performs very simple bitwise and addition operations.

Moreover, the function’s input length and output length follow a clear and predictable

pattern, making it easy to reverse and crack.

Due to this weak hashing mechanism, attackers can easily generate keys that result in the

same ADMIN_KEY_HASH value, which compromises the security of the API’s authorization

process.

19/23

The proof-of-concept (PoC) code demonstrating how the weak hashing can be exploited is as

follows:

constconst generateRandomString generateRandomString == ((lengthlength:: numbernumber)):: stringstring =>=> {{
 constconst characters characters ==
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789';;
 letlet result result == '9''9';;
 constconst charactersLength charactersLength == characters characters..lengthlength;;
 forfor ((letlet i i == 11;; i i << length length;; i i++++)) {{
 result result +=+= characters characters..charAtcharAt((MathMath..floorfloor((MathMath..randomrandom(()) ** charactersLength charactersLength))));;
 }}
 returnreturn result result;;
}};;

constconst pocpoc == (()) =>=> {{
 constconst attempts attempts == 1000000000010000000000;;
 forfor ((letlet i i == 00;; i i << attempts attempts;; i i++++)) {{
 constconst randomString randomString == generateRandomStringgenerateRandomString((55));;
 ifif ((checkKeycheckKey((randomStringrandomString)))) {{
 consoleconsole..loglog((`̀Found valid key: Found valid key: ${${randomStringrandomString}}`̀));;
 }}
 }}
}};;

pocpoc(());;

Suggestion:

It is highly recommended to replace the hashCode function with a secure cryptographic

hash function (e.g., SHA-256) to strengthen the hashing process.

Additionally, implementing proper key management and secure authorization practices will

ensure a more robust and secure system.

20/23

YAR-1 Dependency Known Vulnerability

Severity: Informational

Discovery Methods: Dependency Check

Status: Acknowledged

Code Location:

yarn.lock#1

Descriptions:

The project contains known vulnerabilities in two transitive dependencies:

path-to-regexp: outputs backtracking regular expressions. More Info

body-parser: Vulnerable to denial of service (DoS) attacks when URL encoding is enabled.

More Info

Suggestion:

It is recommended to update these dependencies to mitigate potential risks associated with

the known vulnerabilities.

Resolution:

Plans to address this issue in the next version.

21/23

https://github.com/advisories/GHSA-9wv6-86v2-598j
https://github.com/advisories/GHSA-qwcr-r2fm-qrc7

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

22/23

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

23/23

	564_page1.pdf
	564_page2.pdf

