
One Click Sender
Audit Report

Tue Aug 20 2024

contact@bitslab.xyz https://twitter.com/tonbit_

One Click Sender Audit Report

1 Executive Summary

1.1 Project Information

Description A protocol for batching the sending of Jetton and TON

Type DeFi

Auditors TonBit

Timeline Tue Jul 23 2024 - Tue Aug 20 2024

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/ModoriLabs/ton-batch-sender.git

Commits fd2b251374896228fdfdede0aa6d11f877bef6a6
d28684969f10b443c2eedf9bcba35f81eacc907f
9083db940e6c4633d48294e9db042787e265017b
8c8b8a380363f7506ea886926b2e7a7abfb8ee04

1/11

https://github.com/ModoriLabs/ton-batch-sender.git
https://github.com/ModoriLabs/ton-batch-sender/tree/fd2b251374896228fdfdede0aa6d11f877bef6a6
https://github.com/ModoriLabs/ton-batch-sender/tree/d28684969f10b443c2eedf9bcba35f81eacc907f
https://github.com/ModoriLabs/ton-batch-sender/tree/9083db940e6c4633d48294e9db042787e265017b
https://github.com/ModoriLabs/ton-batch-sender/tree/8c8b8a380363f7506ea886926b2e7a7abfb8ee04

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

GAS contracts/gas.fc 3b18710a537435c4c353f25ed0cd8
e39459129e7

ERR contracts/error.fc d090d3f99435c22fd910ea0cc627e
2dd84195cd1

STD contracts/imports/stdlib.fc 2f104cd568a4cebb1c4112ecf8979
800f0672575

MES contracts/message.fc 77bfd9e186e4591a80273b8117b9
adf685059cb0

OP contracts/op.fc 2542e1adfd34268b49ea9cb76e76
8066f4af9715

BSE contracts/batch_sender.fc 4c6afd80b6b27504dc1a54c1e9a38
d559c239121

STO contracts/storage.fc a676fb49096ad4ce8a2f5b10083b1
739e1ec3a62

2/11

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 2 2 0

Informational 0 0 0

Minor 0 0 0

Medium 0 0 0

Major 2 2 0

Critical 0 0 0

3/11

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

4/11

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/11

2 Summary

This report has been commissioned by ModoriLabs to identify any potential issues and
vulnerabilities in the source code of the One Click Sender smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 2 issues of varying severity, listed below.

ID Title Severity Status

BSE-1 Excess Fee Issue in Message
Handling

Major Fixed

BSE-2 Missing Parameter Validation Major Fixed

6/11

3 Participant Process

Here are the relevant actors with their respective abilities within the One Click Sender Smart
Contract :
Owner

The owner can set one-time fee through set_one_time_fee()

The owner can set per-user fee through set_per_user_fee()

The owner can set fee receiver address through set_fee_receiver_address()

The owner can set referral discount through set_referral_discount()

The owner can set referral fee through set_referral_fee()

The owner can withdraw native currency through withdraw_native()

The owner can withdraw through withdraw()

User

The user can send transfer notification through transfer_notification()

The user can send TON through send_ton()

7/11

4 Findings

BSE-1 Excess Fee Issue in Message Handling

Severity: Major

Status: Fixed

Code Location:

contracts/batch_sender.fc#254

Descriptions:

When the contract handles op::transfer_notification messages, it sends the modified_cost

to the fee_receiver_address . However, when processing op::send_ton messages, it directly

sends the cost to the fee_receiver_address . This is incorrect as it results in sending excess

fees.

ifif ((cost cost >> 00)) {{
 intint modified_cost modified_cost == cost cost;;
 ifif ((has_referralhas_referral)) {{
 intint referral_fee referral_fee == cost cost ** storagestorage::::referral_fee referral_fee // 100100;;
 slice referral slice referral == in_msg_body in_msg_body~~load_msg_addrload_msg_addr(());;
 modified_cost modified_cost == cost cost -- referral_fee referral_fee;;
 send_empty_messagesend_empty_message((referral_feereferral_fee,, referral referral,, IGNORE_ERRORS IGNORE_ERRORS));;
 }}

 send_empty_messagesend_empty_message((costcost,, storagestorage::::fee_receiver_addressfee_receiver_address,, IGNORE_ERRORS IGNORE_ERRORS));;
}}

Suggestion:

It is recommended to change the code to send modified_cost instead of cost when

handling op::send_ton messages, to prevent sending excess fees.

Resolution:

This issue has been fixed. The client has changed the code to send modified_cost instead of

cost when handling op::send_ton messages.

8/11

BSE-2 Missing Parameter Validation

Severity: Major

Status: Fixed

Code Location:

contracts/batch_sender.fc#131-260

Descriptions:

The current contract does not validate parameters like has_referral and referral when

handling op::send_ton and op::transfer_notification operations. This allows users to

manipulate these parameters arbitrarily, which can disrupt the contract's logic. For example,

a user could set the referral to their own address to evade a portion of the fees.

 ifif((has_referralhas_referral)) {{
 discount discount == storage storage::::referral_discountreferral_discount;;
 }}

 varvar cost cost == 00;;

 ifif((fee_typefee_type)) {{
 cost cost == storage storage::::per_user_fee per_user_fee ** len len;;
 }} elseelse {{
 cost cost == storage storage::::one_time_feeone_time_fee;;
 }}

 returnreturn cost cost -- ((cost cost ** discount discount // 100100));;

Suggestion:

It is recommended to add additional logic to validate these parameters.

Resolution:

This issue has been fixed. The client has added additional logic to validate these parameters.

9/11

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

10/11

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

11/11

	502_page1.pdf
	502_page2.pdf

