
Bool Network Smart Contract
Audit Report

Sun Jul 28 2024

contact@bitslab.xyz https://twitter.com/tonbit_

Bool Network Smart Contract Audit Report

1 Executive Summary

1.1 Project Information

Description An external verification model to facilitate arbitrary message
transmission (AMT) across heterogeneous networks.

Type Bridge

Auditors TonBit

Timeline Tue Jun 25 2024 - Sun Jul 28 2024

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/boolnetwork/bool-ton-contracts-v1

Commits f4033a1ef4d6f26d9cdb25a64b2631605550d645
1b8c3b66b1cd1a02bb85e6fc5da706b1267fe7cc
dc10e9befa355b864919b74a6269de022b17364f
a6a1fca4cbb5e5e061993fa02062c2c951457e84
a6a1fca4cbb5e5e061993fa02062c2c951457e84
8a960f34d0bdce47b1fee96e8b3927ae2030b258

1/25

https://github.com/boolnetwork/bool-ton-contracts-v1
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/f4033a1ef4d6f26d9cdb25a64b2631605550d645
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/1b8c3b66b1cd1a02bb85e6fc5da706b1267fe7cc
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/dc10e9befa355b864919b74a6269de022b17364f
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/a6a1fca4cbb5e5e061993fa02062c2c951457e84
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/a6a1fca4cbb5e5e061993fa02062c2c951457e84
https://github.com/boolnetwork/bool-ton-contracts-v1/tree/8a960f34d0bdce47b1fee96e8b3927ae2030b258

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MES contracts/messenger.fc e555b7c1e688093a0753bbf21418
ece1a0281f9e

JBR contracts/jetton-bridge.fc ccb94ed39b90026ddbb03421dfee
6e2ba934c43b

HE3 contracts/helloweb3.fc 2ecd551606bed185d5d1d8192a87
1aad98966b0e

FEE contracts/fee.fc a29e9f8c16fd9b674d74647975e20
f14390b0482

JWA contracts/swap/jetton-wallet/jetton
-wallet.fc

b4f52ecb3fbc20e8899a562ca2752
bba42c12088

PAR contracts/swap/jetton-wallet/impor
ts/params.fc

3e86ce82bee70992c9b0f7b4fcacf0
cacfcfec1b

STD contracts/swap/jetton-wallet/impor
ts/stdlib.fc

48ba5be2230d6db462adb890e7b
15ff0b36b90de

OCO contracts/swap/jetton-wallet/impor
ts/op-codes.fc

de6e2645c68d08535a353fa1b6bd
e7ac915d8ef5

UTI contracts/swap/jetton-wallet/impor
ts/utils.fc

19cd144cd1353e5179c9cefdd1e9b
4f484f4b016

CON contracts/swap/jetton-wallet/impor
ts/constants.fc

4630656a3a259560d0f4971082975
4698357f4d1

JUT contracts/swap/jetton-wallet/impor
ts/jetton-utils.fc

e725b3a317c7c347307c6c7a4b68
9119c04c8b58

2/25

JMI contracts/swap/jetton-wallet/jetton
-minter.fc

20f6f25543e8c2027c78a8c464fd0a
cf4617a236

POO contracts/swap/pool/pool.fc 6e7f1bacd0cb735a5f5dc8e581fc72
fa6f100bb6

UTI1 contracts/swap/pool/utils.fc 6236263904b6b55abbaa13814f99
d1d6f8507025

ERR contracts/swap/router/error.fc 947e979d9aa53ff9210f950ec4221
55d957d18c3

ROU contracts/swap/router/router.fc df60d95f5ce097fe92c243d693425
23d8198a9ce

PCA contracts/swap/router/pool-calls.fc ee685afde74c30e1910a7d0ec6ce0
ce6921d9c09

UTI2 contracts/swap/router/utils.fc a987842e92fd2704238d1b3de6d7
4982a1876383

BSC contracts/swap/bool-swap-consum
er.fc

3310bf162f3fef3ffd57845ef134ce4
114a96865

STD1 contracts/imports/stdlib.fc 2f104cd568a4cebb1c4112ecf8979
800f0672575

ANC contracts/anchor.fc 9b0dca3f244de79c84bb15fe5e0c2
57cd5cc9381

UTI3 contracts/utils.fc e1c9ac213361fee2421666b243b29
d23bcbb3be7

3/25

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 12 12 0

Informational 0 0 0

Minor 6 6 0

Medium 3 3 0

Major 2 2 0

Critical 1 1 0

4/25

1.4 TonBit Audit Breakdown

TonBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

5/25

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review"
strategy to perform a complete security test on the code in a way that is closest to the real
attack. The main entrance and scope of security testing are stated in the conventions in the
"Audit Objective", which can expand to contexts beyond the scope according to the actual
testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

6/25

2 Summary

This report has been commissioned by Bool Network to identify any potential issues and
vulnerabilities in the source code of the Bool Network smart contract, as well as any contract
dependencies that were not part of an officially recognized library. In this audit, we have
utilized various techniques, including manual code review and static analysis, to identify
potential vulnerabilities and security issues.

During the audit, we identified 12 issues of varying severity, listed below.

ID Title Severity Status

MES-1 Lack of Events Emit Minor Fixed

MES-2 The enable_global_path function
Lacks Permission Validation

Minor Fixed

PCA-1 Redundant Exception Throwing Minor Fixed

POO-1 Emit Forged Message Critical Fixed

POO-2 Incorrect Permission of Setting
Rates

Major Fixed

POO-3 Taking Out More Liquidity than
Reserve May Result in A Loss of
Assets.

Major Fixed

POO-4 Changing Token Types Causes
Asset Errors

Medium Fixed

POO-5 Incorrect Judgement Medium Fixed

POO-6 Lack of Native Token Swap Limit
Check

Medium Fixed

POO-7 Incorrect Exception Throwing Minor Fixed

7/25

POO-8 Error Code Not Used Minor Fixed

POO-9 Calculating Gas Consumption
without Checking for Sufficiency

Minor Fixed

8/25

3 Participant Process

Here are the relevant actors with their respective abilities within the Bool Network Smart
Contract :
Admin

The Admin can enable cross chain path by setting status of the chain id through

sending messenger::enable_global_path ;

The Admin can update the admin address through sending

messenger::update_admin .

The Admin can update the code through sending op::update_code .

The Admin can update the fee ratio through sending pool::set_fee_ratio .

The Admin can register the swap consumer through sending

pool::register_swap_consumer .

The Admin can update the jetton wallet address through sending

pool::update_jetton_wallet_addr .

The Admin can update the anchor through sending pool::update_anchor .

The Admin can update the swap limit amount through sending

pool::update_swap_limit .

The Fee Admin can set new fee admin and new fee config through sending

messenger::set_fee_admin and messenger::set_fee_config .

The Fee Receiver can set new fee receiver and withdraw the fee from contract

through sending messenger::set_fee_receiver and messenger::withdraw_fee .

The Admin can update the ctx_jetton_master and ctx_is_locked_jetton through

sending op::update_binding .

The Admin can update the max_import_span through sending

op::update_max_import_span .

The Admin can update the max_unsuccessful_num_limit through sending

op::update_max_unsuccessful_num_limit .

The Admin can remove the unsuccessful nonce through sending

op::remove_unsuccessful_nonce .

User

9/25

The User can transfer tokens to bridge contract to do cross-chain operation through

sending op::transfer_notification() or pool::swap_in .

The User can provide liquidity through sending pool::increase_liquidity .

The User can withdraw tokens from own position through sending

pool::decrease_liquidity or pool::decrease_liquidity_remote .

10/25

4 Findings

MES-1 Lack of Events Emit

Severity: Minor

Status: Fixed

Code Location:

contracts/messenger.fc#178,188,198,375,403;

contracts/swap/pool/pool.fc#591,612,682

Descriptions:

The contract lacks appropriate events for monitoring sensitive operations, which could

make it difficult to track sensitive actions or detect potential issues. For example, the

set_fee_admin , set_fee_receiver , set_fee_config , update_consumer , enable_path , and

so on.

Suggestion:

It is recommended to emit events for those important functions.

Resolution:

The client adopted the suggestion and fixed this issue.

11/25

MES-2 The enable_global_path function Lacks Permission
Validation

Severity: Minor

Status: Fixed

Code Location:

contracts/messenger.fc#108

Descriptions:

Anyone can add a new chain_id to the contract, which will consume contract storage space,

increase gas costs, and potentially lead to security risks.

Suggestion:

It is recommended to confirm if it aligns with the design.

Resolution:

The client adopted the suggestion and fixed this issue.

12/25

PCA-1 Redundant Exception Throwing

Severity: Minor

Status: Fixed

Code Location:

contracts/swap/router/pool-calls.fc#24

Descriptions:

In the case of business processing and release of events based on different topics, the value

of the topic for exceptions is tested in line 24 of the handle_emit_event() function, but the

value of the topic is already limited at the beginning of this if statement, so it is redundant.

Suggestion:

It is recommended to delete this line and make sure it fit with your design.

Resolution:

The client adopted the suggestion and fixed this issue.

13/25

POO-1 Emit Forged Message

Severity: Critical

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc

Descriptions:

Firstly, the attacker need to register our Anchor in the A chain messenger and set the

Consumer and Admin to the attacker address. Then register the Anchor in chain B and

set Consumer to the address of the pool with the asset.

These executions will succeed because register_anchor can be called by anyone. Then we

call essenger::send_message .It passes inspection here because this anchor is set by the

attacker.

Now messenger will release the event and Bool Monitor Service will detect this event and

send a message to the B chain. On the B chain, the receive_message function is executed,

and since the message body is all forged by the attacker and the Anchor is controlled by

the attacker, it is possible to pass the checking of the Anchor correspondence.

Since the private key in the Anchor is also controlled by the attacker, it is able to pass the

signature checking.

Now take out the consumer in the anchor and send the message constructed by the

attacker. This consumer is set up by the attacker after registering the anchor and is a pool

with real assets. The messenger then sends a message to the pool, executing

receive_message_from_messenger in the pool.

And the source of the messenger is only checked in the pool, which may not identify the

attacker's forged message. The attacker passes the messenger's check by forging anchors

and points one of them to the real pool, thus sending a fake message to manipulate the

assets in this pool.

Suggestion:

It is recommended to fix this by checking the anchor mapping relations or other checkings.

Resolution:

14/25

The client adopted the suggestion and added the anchor checking to fix this issue.

15/25

POO-2 Incorrect Permission of Setting Rates

Severity: Major

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#435

Descriptions:

When op == pool::set_fee_ratio ,lack of permission checks when setting handling rates,

which allows everyone to modify rates, resulting in pool rates that are too low or too high to

function.

Suggestion:

It is recommended to add permission control.

Resolution:

The client adopted the suggestion and fixed this issue.

16/25

POO-3 Taking Out More Liquidity than Reserve May Result in A
Loss of Assets.

Severity: Major

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#264

Descriptions:

When indicator == REMOTE_SWAP_OUT it removes the specified amount of liquidity. When

the removed liquidity is greater than the reserve provided by the pool, it will choose to add

the amount quantity to the user's position. We know from the return value of the function

handle_remote_remove_liquidity() that at this point the exit_code is 0, and instead of

returning the result to the messenger it will continue to execute, changing the position, and

then executing to transfer the funds because there is not enough amount in the contract to

pay for the transaction, causing an error to be reported, and at this point there is not a

transfer to the messenger to send any message, which may lead to asset desynchronisation

between the chains, which in turn leads to asset loss.

Suggestion:

It is recommended to make sure this fits your design.

Resolution:

The client adopted the suggestion and fixed this issue.

17/25

POO-4 Changing Token Types Causes Asset Errors

Severity: Medium

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#591

Descriptions:

If the token type is changed when changing the jetton wallet address, this will result in the

number of tokens in the original user's position being taken out of the newly changed

number of tokens. This is due to the fact that when changing the token type, the position

information is still the same as the previous token, which can lead to a serious loss of funds.

Suggestion:

It is recommended to update your jetton wallet address with the same token.

Resolution:

The client adopted the suggestion and fixed this issue.

18/25

POO-5 Incorrect Judgement

Severity: Medium

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#848

Descriptions:

In the handle_swap_out function, when adjusted_amount and fee are judged,

adjusted_amount has already deducted the fee , and further judgment will result in an

incorrect result being returned.

 adjusted_amount -= fee;

 if (adjusted_amount < fee) {

 exit_code = error::insufficient_fee;

 return (exit_code, 0, 0, recipient, part_payload_cs, need_fwd);

 }

Suggestion:

It is recommended to check the adjusted_amount before deducting the fee .

Resolution:

The client adopted the suggestion and fixed this issue.

19/25

POO-6 Lack of Native Token Swap Limit Check

Severity: Medium

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#137

Descriptions:

When calling this function in the native token pool, there is no check on the number of

tokens, which is required for jetton type tokens.

 ;; check if the swap amount exceeds the limit

throw_if(error::swap_limit_exceed, transfer_amount > swap_limit);

Suggestion:

It is recommended to confirm if it aligns with the design.

Resolution:

The client adopted the suggestion and fixed this issue.

20/25

POO-7 Incorrect Exception Throwing

Severity: Minor

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#856,895

Descriptions:

In the process of performing integer operations:

if (is_native) {

 ton_amount = (msg_value - SEND_MESSAGE_TO_MESSENGER_FEE_CONSUMPTION -

transfer_amount);

 mode = SEND_MODE_REGULAR;

 ;; ton native

 throw_if(error::cross_amount_exceeded_deposit, transfer_amount > msg_value);

 }

There are two issues in the above code. The first is to put the throw after the operation,

which will make the throw statement invalid because the exception has been thrown by the

virtual machine before the exception is thrown. The second is that

SEND_MESSAGE_TO_MESSENGER_FEE_CONSUMPTION is not used as a size judgment

operation, which may cause an exception to not be thrown in some cases.

Suggestion:

It is recommended to move the throw statement forward and include constants in size

comparisons.

Resolution:

The client adopted the suggestion and fixed this issue.

21/25

POO-8 Error Code Not Used

Severity: Minor

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc#8,11,20,23,27,28,31;

contracts/messenger.fc#9

Descriptions:

These error codes are never used. In the pool::call_back_from_swap_consumer ,error code

swap_consumer_already_registered is misused as unknown_swap_consumer , where it is a

judgement on whether the message is from a consumer rather than whether it has been

registered or not.

Suggestion:

It is recommended to remove these error codes as you see fit.

Resolution:

The client adopted the suggestion and fixed this issue.

22/25

POO-9 Calculating Gas Consumption without Checking for
Sufficiency

Severity: Minor

Status: Fixed

Code Location:

contracts/swap/pool/pool.fc;

contracts/messenger.fc

Descriptions:

We have noticed that calculations of gas consumption almost never take into account the

case of insufficient gas consumption, which can result in negative results and cause other

functions to report errors, which can make it difficult to trace the problem.

Suggestion:

It is recommended to confirm if it aligns with the design.

Resolution:

The client adopted the suggestion and fixed this issue.

23/25

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

24/25

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

25/25

	440_page1.pdf
	440_page2.pdf

